www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraKörperisomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Körperisomorphismus
Körperisomorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperisomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 So 24.09.2006
Autor: Denny22

Hallo an alle,

Seien $K$ und $L$ Körper. Weiter habe ich eine Abbildung [mm] $\varphi$ [/mm] gefunden, so dass
[mm] $\varphi$:$K\longrightarrow [/mm] L$
ein Körperisomorphismus ist.
Meine Frage ist nun: Vererben sich die Eigenschaften? D.h.:
Angenommen wir wüßten von K, dass K vollständig ist. Können wir anhand des Körperisomorphismuses folgern, dass L vollständig ist?
oder:
Angenommen ich weiß [mm] $\IQ\subset [/mm] K,L$ sind Oberkörper von [mm] $\IQ$ [/mm] und $L$ liegt dicht in [mm] $\IQ$. [/mm] Folgt dann aufgrund des Körperisomorphismuses, dass auch $K$ dicht in [mm] $\IQ$ [/mm] ist?
Also allgemein wollte ich nur wissen, ob ich einen Körperisomorphismus dazu verwenden kann, Eigenschaften von einem Körper K auf einen Körper L zu übertragen.

Ich danke euch für eure Antworten.

Denny

(Diese Fragen wurde in keinem anderen Forum und auf keiner anderen Internetseite gestellt.)

        
Bezug
Körperisomorphismus: Tipp
Status: (Antwort) fertig Status 
Datum: 13:14 So 24.09.2006
Autor: dormant

Hi!

>  Meine Frage ist nun: Vererben sich die Eigenschaften?

Ja.

>  Angenommen ich weiß [mm]\IQ\subset K,L[/mm] sind Oberkörper von [mm]\IQ[/mm]
> und [mm]L[/mm] liegt dicht in [mm]\IQ[/mm].

Gemeint hast du bestimmt das Gegenteil: [mm] \IQ [/mm] liegt dicht in [mm] \IL. [/mm]

>  Also allgemein wollte ich nur wissen, ob ich einen
> Körperisomorphismus dazu verwenden kann, Eigenschaften von
> einem Körper K auf einen Körper L zu übertragen.

Kannst du.

Gruß,

dormant

Bezug
                
Bezug
Körperisomorphismus: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:22 Mo 25.09.2006
Autor: Denny22

Danke für die Antwort.

Jetzt habe ich endlich verstanden, wofür solche Körperisomorphismen gut sind.

Danke nochmals

Bezug
        
Bezug
Körperisomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 01:20 Di 26.09.2006
Autor: felixf

Hallo Denny!

> Seien [mm]K[/mm] und [mm]L[/mm] Körper. Weiter habe ich eine Abbildung
> [mm]\varphi[/mm] gefunden, so dass
>  [mm]\varphi[/mm]:[mm]K\longrightarrow L[/mm]
>  ein Körperisomorphismus ist.
>  Meine Frage ist nun: Vererben sich die Eigenschaften?

Das haengt ganz von der Eigenschaft ab, insb. davon ob sich die Eigenschaft nur auf den Koerper bezieht oder noch auf eine weitere Struktur, etwa auf eine Bewertung/Topologie des Koerpers. Isomorphismen von Koerpern ignorieren solche weitere Eigenschaften.

Nimm etwa $K = [mm] \IQ(\sqrt[3]{2})$ [/mm] und $L = [mm] \IQ(\exp(\frac{2\pi i}{3}) \sqrt[3]{2})$, [/mm] jeweils ausgestattet mit der Relativtopologie von [mm] $\IC$. [/mm] Beide Koerper sind isomorph (da die erzeugenden Elemente das gleiche Minimalpolynom ueber [mm] $\IQ$ [/mm] haben), jedoch liegt [mm] $\IQ$ [/mm] nur dicht in $K$, aber nicht in $L$ (bzgl. der Relativtopologie). Und $L$ liegt dicht in [mm] $\IC$, [/mm] $K$ jedoch nicht.

> D.h.:
>  Angenommen wir wüßten von K, dass K vollständig ist.
> Können wir anhand des Körperisomorphismuses folgern, dass L
> vollständig ist?

Im Allgemeinen gilt das nicht. Wenn der Isomorphismus jedoch vertraeglich mit der Bewertung ist (ich nehme mal an, dass du vollstaendig bzgl. einer Bewertung meinst), dann doch. Wenn er nicht mit den Bewertungen vertraeglich ist, dann kann die Aussage sowohl richig als auch falsch sein.

>  oder:
>  Angenommen ich weiß [mm]\IQ\subset K,L[/mm] sind Oberkörper von [mm]\IQ[/mm]
> und [mm]L[/mm] liegt dicht in [mm]\IQ[/mm]. Folgt dann aufgrund des
> Körperisomorphismuses, dass auch [mm]K[/mm] dicht in [mm]\IQ[/mm] ist?

Siehe oben, das muss nicht umbedingt gelten.

>  Also allgemein wollte ich nur wissen, ob ich einen
> Körperisomorphismus dazu verwenden kann, Eigenschaften von
> einem Körper K auf einen Körper L zu übertragen.

Bei Eigenschaften wie der Charakteristik des Koerpers, der Dimension ueber dem Primkoerper etc. geht das problemlos... Oder wenn der Isomorphismus einen gewissen Unterkoerper $K'$ erhaelt, dann werden auch Eigenschaften wie $K/K'$ separabel/$K/K'$ normal erhalten. Aber manche Eigenschaften werden halt nicht erhalten.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]