www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisKoerzivität zeigen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - Koerzivität zeigen
Koerzivität zeigen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koerzivität zeigen: mit Young
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:52 Di 22.01.2013
Autor: mikexx

Aufgabe
Zeigen Sie, dass

[mm] $F(u)=\int\limits_0^1 (1-u'(x)^2)^2+u(x)^2\, [/mm] dx$ mit [mm] $u\in W^{1,4}(0,1)$ [/mm]

koerziv ist.

Verwenden Sie dazu die Young-Ungleichung

[mm] $2ab\leq \varepsilon a^2+\frac{b^2}{\varepsilon}~\forall~a,b,\varepsilon [/mm] > 0$.



Also was ich zeigen muss, ist meines Wissens Folgendes:

Es gelte

[mm] $\lVert u_n\rVert_{L^4}+\lVert u_n'\rVert_{L^4}=\lVert u_n\rVert_{W^{1,4}}\to\infty$. [/mm]

Zeige [mm] $F(u_n)\to\infty$. [/mm]


Ich habe erstmal [mm] $F(u_n)$ [/mm] ausgeschrieben:

[mm] $F(u_n)=\int\limits_0^1 (1-u_n'(x)^2)^2+u_n(x)^2\, dx=\int\limits_0^1 1-2u_n'(x)^2+u_n'(x)^4+u_n(x)^2\, [/mm] dx$

Wie sieht man jetzt, daß dieses Integral gegen [mm] $\infty$ [/mm] geht und wie benutze ich zu diesem Nachweis die obige Ungleichung von Young?


Leider sehe ich's nicht.



Viele Grüße

mikexx

        
Bezug
Koerzivität zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 So 27.01.2013
Autor: Marcel

Hi,

> Zeigen Sie, dass
>
> [mm]F(u)=\int\limits_0^1 (1-u'(x)^2)^2+u(x)^2\, dx[/mm] mit [mm]u\in W^{1,4}(0,1)[/mm]
>  
> koerziv ist.
>  
> Verwenden Sie dazu die Young-Ungleichung
>  
> [mm]2ab\leq \varepsilon a^2+\frac{b^2}{\varepsilon}~\forall~a,b,\varepsilon > 0[/mm].
>  
>
> Also was ich zeigen muss, ist meines Wissens Folgendes:
>  
> Es gelte
>  
> [mm]\lVert u_n\rVert_{L^4}+\lVert u_n'\rVert_{L^4}=\lVert u_n\rVert_{W^{1,4}}\to\infty[/mm].
>  
> Zeige [mm]F(u_n)\to\infty[/mm].
>  
>
> Ich habe erstmal [mm]F(u_n)[/mm] ausgeschrieben:
>  
> [mm]F(u_n)=\int\limits_0^1 (1-u_n'(x)^2)^2+u_n(x)^2\, dx=\int\limits_0^1 1-2u_n'(x)^2+u_n'(x)^4+u_n(x)^2\, dx[/mm]
>  
> Wie sieht man jetzt, daß dieses Integral gegen [mm]\infty[/mm] geht
> und wie benutze ich zu diesem Nachweis die obige
> Ungleichung von Young?
>  
>
> Leider sehe ich's nicht.

einfach mal []hier (klick!) mitlesen! (Ob das
nun ein Crossposting von Dir ist, weiß ich (noch) nicht...)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]