www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikKombinatorik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Kombinatorik" - Kombinatorik
Kombinatorik < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Formel zu Kombinatorik
Status: (Frage) beantwortet Status 
Datum: 14:04 So 31.01.2016
Autor: Spender

Aufgabe
n·(n-1)·(n-2)·…·(n-k+1)/k!

Hallo,

ich habe hier einen Formulierung gefunden, die doch so nicht richtig ist oder?
"Aus n verschiedenen Elementen können k Elemente (k ≤ n) ohne Berücksichtigung der Reihenfolge auf n·(n-1)·(n-2)·…·(n-k+1)/k! Arten ausgewählt werden" Muss es nicht heißen, wenn die Reihenfolge egal ist und nicht zurüclgelegt wird: n!/ k!*(n-k)!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Merci




        
Bezug
Kombinatorik: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:59 So 31.01.2016
Autor: Spender

Das ist der Fall wenn ich die Reihenfolge beachte und nicht wiederhole!



Bezug
        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 So 31.01.2016
Autor: angela.h.b.


> n·(n-1)·(n-2)·…·(n-k+1)/k!
>  Hallo,
>  
> ich habe hier einen Formulierung gefunden, die doch so
> nicht richtig ist oder?
>  "Aus n verschiedenen Elementen können k Elemente (k ≤
> n) ohne Berücksichtigung der Reihenfolge auf
> n·(n-1)·(n-2)·…·(n-k+1)/k! Arten ausgewählt werden"
> Muss es nicht heißen, wenn die Reihenfolge egal ist und
> nicht zurüclgelegt wird: n!/ k!*(n-k)!

Hallo,

[willkommenmr].

Beides ist richtig:

es ist [mm] \bruch{n!}{k!*(n-k)!}=\bruch{n*(n-1)*(n-2)*...(n-k+1)*(n-k)(n-k-1)*...*3*2*1}{k!*(n-k)!}=\bruch{n*(n-1)*(n-2)*...(n-k+1)*(n-k)!}{k!*(n-k)!}=\bruch{n*(n-1)*(n-2)*...(n-k+1)}{k!} [/mm]

Ohne Zurücklegen, ohne Beachtung der Reihenfolge.

LG Angela

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Merci
>  
>
>  


Bezug
                
Bezug
Kombinatorik: NAchfrage
Status: (Frage) beantwortet Status 
Datum: 15:57 So 31.01.2016
Autor: Spender

Hi :)

kannst mir das noch mal darlegen?
Wie komme ich auf (n-k+1) * (n-k) * (n-k-1) ...

Bezug
                        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 So 31.01.2016
Autor: angela.h.b.


> Hi :)
>  
> kannst mir das noch mal darlegen?
> Wie komme ich auf (n-k+1) * (n-k) * (n-k-1) ...  

Hallo,

ich mache das mal an einem Beispiel:

es ist doch
(n=10, k=4, n-k=6)

10!=10*9*...*7*6*5*...*2*1=10*9*...*(6+1)*6*(6-1)*...*2*1.

Es ist halt (n-k-1) der Vorgänger von n-k, und (n-k+1) der Nachfolger.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]