www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesKombinatorik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Kombinatorik
Kombinatorik < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:03 Do 05.05.2005
Autor: squeezer

Hallo

Ich hab folgende Aufgabe zu bearbeiten:

Gegeben sei eine Menge M und eine Zerlegung:
M = [mm] \bigcup_{j=1}^{n} M_{j} [/mm] von M.
Es sei [mm] m_{j} [/mm] := [mm] |M_{j}|. [/mm] WIe viele Teilmengen von T von M gibt es, die aus jedem [mm] M_{j} [/mm] ein Element (vieleicht aber auch keines) enthalten.

Ich weiss leider nicht genau wie ich die Sachen angehen soll. Ich habe mir 2 3-elementige Beispielmengen ausgesucht aber ich kriegs irgendwie nicht gebacken... Geschweige denn für beliebige Mengen. Zudem weiss ich nicht genau was es mit der Angabe "vieleicht aber auch keines" auf sich hat.

Vielen Dank für eure Hilfe

Marc

        
Bezug
Kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:40 Do 05.05.2005
Autor: Hanno

Hallo Squeezer!

Soll gemeint sein: man finde die Anzahl aller Teilmengen $T$ von $M$, die für alle [mm] $j\in\IN, 1\leq j\leq [/mm] n$ höchstens ein Element mit [mm] $M_j$ [/mm] gemeinsam haben?


Liebe Grüße,
Hanno

Bezug
                
Bezug
Kombinatorik: Wenn ja, dann...
Status: (Antwort) fertig Status 
Datum: 15:04 Do 05.05.2005
Autor: Hanno

Hallo nochmals!

Wenn [mm] $|T\cap M_j|\leq [/mm] 1, [mm] 1\leq j\leq [/mm] n$ sein soll, dann gibt es genau [mm] $\produkt_{j=1}^{n}|m_j+1|$ [/mm] solcher Teilmengen. Dies kann wie folgt eingesehen werden: du wählst aus jeder der [disjunkten] Mengen [mm] $M_j,1\leq j\leq [/mm] n$ entweder genau eines oder kein Element. Insgesamt hast du also für die Menge [mm] $M_j$ [/mm] genau [mm] $|M_j|+1=m_j+1$ [/mm] Auswahlmöglichkeiten. Dies führt direkt zu obigem Ergebnis. Ein Spezialfall, der sich ja mit der Formel auch behandeln lassen muss (eine Art Kontrolle also), ist [mm] $M:=\{a_1,a_2,...,a_n\}$ [/mm] mit der Partition [mm] $M_j:=\{a_j\}, 1\leq j\leq [/mm] n$. Jede Teilmenge von $M$ beinhaltet entweder ein oder kein Element aus jeder der [mm] $M_j$, [/mm] d.h. jede Teilmenge muss in obiger Zählung mitgezählt worden sein. Da es genau [mm] $2^n$ [/mm] Teilmengen von $M$ gibt, muss demnach auch die gefundene Formel [mm] $2^n$ [/mm] als Ergebnis ausgeben - dies trifft wegen [mm] $m_j=1, 1\leq j\leq [/mm] n$ zu.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]