www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikKommutator
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Kommutator
Kommutator < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutator: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:11 Fr 30.07.2010
Autor: mb588

Aufgabe
Berechnen Sie folgenden Kommutator:

[mm] [\hat{x},\hat{L}_{y}] [/mm]

Hallo.
Ich brauch hier nur mal eine kleine Hilfe. Soweit bin ich bereits:

[mm] [\hat{x},\hat{L}_{y}]=[\hat{x},\hat{z}\hat{p}_{x}-\hat{x}\hat{p}_{z}]=[\hat{x},\hat{z}\hat{p}_{x}]+[\hat{x},-\hat{x}\hat{p}_{z}]=[\hat{x},\hat{z}]\hat{p}_{x}+\hat{z}[\hat{x},\hat{p}_{x}]-[\hat{x},\hat{x}]\hat{p}_{z}-\hat{x}[\hat{x},\hat{p}_{z}]=[\hat{x},\hat{z}]\hat{p}_{x}+\hat{z}i\overline{h}-0-0=i\overline{h}\hat{z}+\hat{x}\hat{z}\hat{p}_{x}-\hat{z}\hat{x}\hat{p}_{x} [/mm]

Das der vorletzte Summand Null wird liegt daran das [mm] [\hat{x},\hat{x}] [/mm] vertauschen, da [mm] \hat{x}\hat{x}-\hat{x}\hat{x}=0 [/mm] ist und der letzte Summand wird Null, da die Vertauschungrelation gilt, also [mm] [\hat{x}_{i},\hat{p}_{x_{j}}]=i\overline{h}\delta_{i,j} [/mm]  gilt für [mm] \hat{x}_{i}=\hat{x},\hat{y},\hat{z}. [/mm]

Kann man das jetzt noch weiter ausrechnen bzw. zusammenfassen?

Dank für die Antwort.

        
Bezug
Kommutator: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Sa 31.07.2010
Autor: Kroni

Hi,

> Berechnen Sie folgenden Kommutator:
>  
> [mm][\hat{x},\hat{L}_{y}][/mm]
>  Hallo.
>  Ich brauch hier nur mal eine kleine Hilfe. Soweit bin ich
> bereits:
>  
> [mm][\hat{x},\hat{L}_{y}]=[\hat{x},\hat{z}\hat{p}_{x}-\hat{x}\hat{p}_{z}]=[\hat{x},\hat{z}\hat{p}_{x}]+[\hat{x},-\hat{x}\hat{p}_{z}]=[\hat{x},\hat{z}]\hat{p}_{x}+\hat{z}[\hat{x},\hat{p}_{x}]-[\hat{x},\hat{x}]\hat{p}_{z}-\hat{x}[\hat{x},\hat{p}_{z}]=[\hat{x},\hat{z}]\hat{p}_{x}+\hat{z}i\overline{h}-0-0=i\overline{h}\hat{z}+\hat{x}\hat{z}\hat{p}_{x}-\hat{z}\hat{x}\hat{p}_{x}[/mm]
>
> Das der vorletzte Summand Null wird liegt daran das
> [mm][\hat{x},\hat{x}][/mm] vertauschen, da
> [mm]\hat{x}\hat{x}-\hat{x}\hat{x}=0[/mm] ist und der letzte Summand
> wird Null, da die Vertauschungrelation gilt, also
> [mm][\hat{x}_{i},\hat{p}_{x_{j}}]=i\overline{h}\delta_{i,j}[/mm]  
> gilt für [mm]\hat{x}_{i}=\hat{x},\hat{y},\hat{z}.[/mm]
>  
> Kann man das jetzt noch weiter ausrechnen bzw.
> zusammenfassen?
>  

ja, das kann man noch weiter zusammenfassen (Ich lasse aber die [mm] $\hat$ [/mm] weg bei den Operatoren):

[mm] $[x,L_y] [/mm] = [mm] [x,z]p_x [/mm] + [mm] z[x,p_x]$ [/mm] wie du richtig ausgerechnet hast. Nun gilt aber: $[x,z]=0$, denn, wenn dus dir zB in Ortsraumdarstellung anschaust, sind [mm] $\hat{x} [/mm] = x$ und [mm] $\hat{z} [/mm] = z$, also $xz = zx [mm] \Rightarrow [/mm] [x,z] = 0$, oder, allgemeiner:

[mm] $[x_i,x_j] [/mm] = 0 [mm] \quad \forall i,j=1,\ldots,n$ [/mm] mit [mm] $n=\mathrm{dim}V$, [/mm] also in unserem Fall $n=3$.

Damit faellt dann auch der letzte Term weg, und es bleibt nur noch der erste ueber.

Achso, wenn man sich die Sache mit dem Kreuzprodukt ersparen will, dann ist es ab und zu ganz nuetzlich, den Levi-Civita-Tensor [mm] $\epislon_{ijk}$ [/mm] einzufuehren, um damit das Kreuzprodukt auszudruecken (d.h. [mm] $(a\times b)_i [/mm] = [mm] \epsilon_{ijk} a_j b_k$), [/mm] aber das ist nur ein anderer Weg, der ab und zu schneller geht, als alles 'per Hand' auszurechnen.



LG

Kroni

> Dank für die Antwort.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]