Kompakt->Vollständig < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 00:32 Sa 07.05.2005 | Autor: | Tito |
Hallo
Ich soll zeigen das jeder kompakte metrische Raum vollständig ist.
Also muss ich zeigen das jede Cauchy-Folge des metrischen Raums in den selbigen konvergiert.
Aber ein kompakter Raum ist abgeschlossen, also gibt es mind. eine Folgen [mm] (x_n)_{n \in \IN} [/mm] die gegen x des metrischen Raums konvergiert. Aber jede konvergente Folge ist doch eine Cauchy-Folge (oder ?). Aber dann bräuchte ich doch nichts mehr zeigen, so einfach kann das aber nicht sein, könnte mir bitte jemand weiterhelfen, danke.
Bye, Tito
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:05 Sa 07.05.2005 | Autor: | Marcel |
Hallo Tito!
> Hallo
>
> Ich soll zeigen das jeder kompakte metrische Raum
> vollständig ist.
> Also muss ich zeigen das jede Cauchy-Folge des metrischen
> Raums in den selbigen konvergiert.
> Aber ein kompakter Raum ist abgeschlossen, also gibt es
> mind. eine Folgen [mm](x_n)_{n \in \IN}[/mm] die gegen x des
> metrischen Raums konvergiert. Aber jede konvergente Folge
> ist doch eine Cauchy-Folge (oder ?). Aber dann bräuchte ich
> doch nichts mehr zeigen, so einfach kann das aber nicht
> sein, könnte mir bitte jemand weiterhelfen, danke.
Naja, irgendwie blick ich bei deiner Argumentation nicht so ganz durch, wo ist denn das Argument, dass eine beliebige Cauchyfolge in dem Raum konvergiert? Das hast du ja nicht gezeigt... Aber ich geb dir mal einen Hinweis, wie man bei der Aufgabe anfangen kann:
Ist $(X,d)$ ein kompakter metrischer Raum, so besitzt jede Folge eine konvergente Teilfolge mit Grenzwert in $X$ (schlag das in der Vorlesung nach, bzw. Satz 11.4, S. 100 (skriptinterne Zählung)!).
Jetzt nehmen wir uns also irgendeine Cauchyfolge [mm] $(x_n)_{n \in \IN}$ [/mm] aus $(X,d)$ her. Die Cauchyfolge [mm] $(x_n)_{n \in \IN}$ [/mm] hat dann also auch eine Teilfolge [mm] $(x_{n_m})_{m \in \IN}$, [/mm] so dass [m]\lim_{\red{m} \to \infty}x_{n_m}=x \in X[/m] existiert. Deine Aufgabe ist es nun, mit z.B. [mm] "$\varepsilon$-Rechnungen" [/mm] nachzuweisen, dass dann auch die ursprüngliche Folge [mm] $(x_n)_{n \in \IN}$ [/mm] (was ja eine Cauchyfolge in $(X,d)$ war) gegen $x [mm] \in [/mm] X$ konvergiert, d.h., du hast noch zu zeigen, dass auch [mm] $\lim_{n \to \infty}x_n=x$ [/mm] gilt. Denn dann hast du gezeigt, dass die Cauchyfolge [mm] $(x_n)_{n \in \IN}$ [/mm] gegen ein Element $x [mm] \in [/mm] X$ konvergiert, und da das eine beliebige Cauchyfolge war, ist $(X,d)$ damit vollständig!
Das heißt, du fängst an:
Sei [mm] $\varepsilon [/mm] > 0$ gegeben. Sei [mm] $(x_n)_{n \in \IN}$ [/mm] Cauchyfolge. Dann existiert eine Teilfolge mit... . Da [mm] $(x_n)_{n \in \IN}$ [/mm] Cauchy ist, folgt... (das probierst du mal bitte erst alleine )!
Viele Grüße,
Marcel
|
|
|
|