www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKompakt, Überdeckung, konv.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Kompakt, Überdeckung, konv.
Kompakt, Überdeckung, konv. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompakt, Überdeckung, konv.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Do 04.10.2012
Autor: theresetom

Aufgabe
1)Wenn X nicht beschränkt ist, so gibt es eine Folge [mm] x_j [/mm] von Punkten in X mit [mm] |x_j [/mm] | > j, diese kann keine konvergente Teilfolge beinhalten
2)Wenn [mm] (U_\alpha)_{\alpha \in A} [/mm] eine offene Überdeckung von K ist, so gibt es [mm] \alpha_1 [/mm] ,.., [mm] \alpha_n \in [/mm] A mit K [mm] \subseteq \bigcup_{j=1}^N U_{\alpha_i } [/mm]
-> K ist beschränkt und abgeschlossen

Hallo,

Warum gilt die Aussage 1) ?

Zu 2)

.) K ist beschränkt , da K [mm] \subseteq \bigcup_{j\in \IN}^\infty [/mm] (-j , j)
und damit [mm] \exists j_1 [/mm] ,.., [mm] j_n [/mm] mit K  [mm] \subseteq \bigcup_{j=1}^N [/mm] (-j , j)= [mm] (-max\{j_1 ,..,j_n\}, [/mm] + [mm] max\{j_1,..,j_n\} [/mm] )
Meine Frage dazu: Warum gilt:  [mm] \bigcup_{j =1}^N [/mm] (-j , j)= (-max [mm] \{j_1 ,..,j_n\}, [/mm] + max [mm] \{j_1,..,j_n\} [/mm] )

.) [mm] K^C [/mm] offen
x [mm] \in K^C [/mm] so ist K [mm] \subseteq \bigcup_{j=1}^\infty [/mm] ( [x-1/j, [mm] x+1/j]^C) [/mm]

> Wieso gilt das? oder hab ich das mit die Klammern falsch aufgeschrieben?

also (x-1/j, x+1/j) [mm] \subset K^C [/mm]
-> also ist [mm] K^C [/mm] offen

        
Bezug
Kompakt, Überdeckung, konv.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Do 04.10.2012
Autor: rainerS

Hallo!

> 1)Wenn X nicht beschränkt ist, so gibt es eine Folge [mm]x_j[/mm]
> von Punkten in X mit [mm]|x_j | > j[/mm], diese kann keine
> konvergente Teilfolge beinhalten
>  2)Wenn [mm](U_\alpha)_{\alpha \in A}[/mm] eine offene Überdeckung
> von K ist, so gibt es [mm]\alpha_1,\dots,\alpha_n \in A[/mm] mit
> [mm] K \subseteq \bigcup_{j=1}^N U_{\alpha_i }[/mm]
>  -> K ist

> beschränkt und abgeschlossen
>  Hallo,
>  
> Warum gilt die Aussage 1) ?

Wenn es eine konvergente Teilfolge mit Grenzwert a gäbe, dann müssten unendliche viele Folgenelemente in einer beliebig kleinen [mm] $\varepsilon$-Umgebung [/mm] des Grenzwertes a liegen.  Wähle irgendeine ganze Zahl m [mm] >|a+\varepsilon|$. [/mm] Per Definition der Folge sind alle Folgenglieder ab [mm] $x_m$ [/mm] betragsmäßig größer als m und liegen daher außerhalb dieser [mm] $\varepsilon$-Umgebung. [/mm]

>  
> Zu 2)
>  
> .) K ist beschränkt , da [mm]K \subseteq \bigcup_{j\in \IN}^\infty (-j , j)[/mm]

Wieso denn das?  [mm] $\bigcup_{j\in \IN}^\infty [/mm] (-j , j) = [mm] \IR$, [/mm] damit ist nichts über die Beschränktheit von K ausgesagt!

Die Aussage von Teil 2 ist diese: wenn es zu einer beliebigen offenen Überdeckung [mm](U_\alpha)_{\alpha \in A}[/mm] von K möglich ist, K mit einer endlichen Anzahl [mm] $\{U_{\alpha_1},\dots,U_{\alpha_n}\} [/mm] von Mengen aus  [mm](U_\alpha)_{\alpha \in A}[/mm] zu überdecken, dann ist K beschränkt und abgeschlossen. Das ist die eine Richtung der Äquivalenzaussage von Heine-Borel.

Tipp zur Beschränkheit: betrachte eine Überdeckung aus Umgebungen der Form [mm] $U_\alpha [/mm] = [mm] \{x\mid |x|<\alpha\}$ [/mm] .

Tipp zur Abgeschlossenheit: Zeige, dass jeder Häufungspunkt von K zu K gehört.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]