www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKompaktheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Kompaktheit
Kompaktheit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompaktheit: kurze frage
Status: (Frage) beantwortet Status 
Datum: 02:23 Mo 03.12.2007
Autor: jaruleking

Aufgabe
[mm] K=[0,1]\cap\IQ [/mm] ist nicht Kompakt, da [mm] \bruch \wurzel{2}{2}, [/mm] die 2 soll unter die wurzel, habe es nicht hinbekommen, der Bruch ein Häufungspunkt ist und nicht in K liegt.

So habe jetzt mal ne frage zur späten stunde. die schreibeweise oben, ist die zahl dann eine rationale zahl, weil man sie als bruch darstellen kann und rationale zahlen liegen ja nicht in meiner menge, deshalb ist der häufungspunkt auserhalb von k. ist das so richtig? oder wie kann man das erklären?

danke schon mal

gruß

        
Bezug
Kompaktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 03:14 Mo 03.12.2007
Autor: MatthiasKr

Hi,
> [mm]K=[0,1]\cap\IQ[/mm] ist nicht Kompakt, da [mm]\bruch {\wurzel{2}){2},[/mm]
> die 2 soll unter die wurzel, habe es nicht hinbekommen, der
> Bruch ein Häufungspunkt ist und nicht in K liegt.
>  So habe jetzt mal ne frage zur späten stunde. die
> schreibeweise oben, ist die zahl dann eine rationale zahl,
> weil man sie als bruch darstellen kann und rationale zahlen
> liegen ja nicht in meiner menge, deshalb ist der
> häufungspunkt auserhalb von k. ist das so richtig? oder wie
> kann man das erklären?
>  
> danke schon mal
>  
> gruß

also: deine menge sind alle rationalen zahlen im einheitsintervall. die zahl [mm] $\frac{\sqrt{2}}{2}$ [/mm] (die meinst du doch oder?) ist irrational, also nicht in der menge. Allerdings sind alle irrationalen zahlen HPe der rationalen zahlen, da diese in den reellen zahlen DICHT liegen. also auch [mm] $\frac{\sqrt{2}}{2}$. [/mm]
je nachdem, wie ihr kompaktheit definiert habt, kann man dann folgern, dass deine menge nicht kompakt ist, ja. (sie ist nicht abgeschlossen)

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]