www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKompexe Nullstellen bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Kompexe Nullstellen bestimmen
Kompexe Nullstellen bestimmen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompexe Nullstellen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 Fr 04.07.2008
Autor: little_doc

Aufgabe
Bestimmen Sie die Nullstellen des Polynoms
p(t) = [mm] 4t^{4}-20t^{3}+73t^{2}-138t+90 [/mm] in R und C.
Bekannt ist, dass bei x=1.5 der Graph die x-Achse berührt.

Hallo zusammen

In R die Nullstellen bestimmen ist kein Problem.
Berührung --> Doppelte Nullstelle (x-1.5).
[mm] 4t^{4}-20t^{3}+73t^{2}-138t+90 [/mm] : [mm] (x-1.5)^{2} [/mm] = [mm] 4x^{2}-8t+40 [/mm]

so, [mm] 4x^{2}-8t+40 [/mm] ist in R nicht mehr weiter zerlgegbar.

Wie kriege ich jetzt die beiden Komplexen Nullstellen dazu?

Es müsste doch gelten: (x-(a+jb)*(x-(a-jb) = [mm] 4x^{2}-8t+40 [/mm]
wie kann ich jetzt a und b bestimmen?

lg Tobi

        
Bezug
Kompexe Nullstellen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Fr 04.07.2008
Autor: MasterEd

Hallo,

die Nullstellen von [mm] 0=4x^2-8x+40 [/mm] kannst Du in diesem Fall mit der pq-Formel ausrechnen. Teile zunächst durch 4, damit Du die Formel anwenden kannst. Mit [mm] 0=x^2-2x+10 [/mm] bekommst du p=-2 und q=10 und dann:

[mm] x=1\pm\wurzel{1-10}=1\pm\wurzel{-9}=1\pm 3*\wurzel{-1}=1\pm3*i [/mm]

(Da der Radikand der Wurzel negativ ist, gibt es keine reellen Nullstellen.)
Die komplexen Nullstellen sind [mm] x_1=1+3i [/mm] und [mm] x_2=1-3i. [/mm]

Bezug
                
Bezug
Kompexe Nullstellen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:22 Fr 04.07.2008
Autor: Gonozal_IX

Das geht zwar um auf die komplexen Nullstellen zu kommen, aber als Lösungsweg wenn mans genau nimmt falsch. Die Wurzelgesetze gelten nämlich in [mm] \IC [/mm] nicht.

MFG,
Gono.

Bezug
                        
Bezug
Kompexe Nullstellen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 So 06.07.2008
Autor: hhashavti

Lieber Gono,

das ist vollkommener Blödsinn.

JDH

Bezug
                                
Bezug
Kompexe Nullstellen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:15 So 06.07.2008
Autor: Gonozal_IX

Hiho,


> das ist vollkommener Blödsinn.

Nein ist es nicht, im Komplexen gilt die Gleichung

[mm]\sqrt{a*b} = \sqrt{a}*\sqrt{b}[/mm] leider nicht.

Bei Bedarf auch gerne ein Beweis dazu, allerdings kann man Kommentare auch freundlicher schreiben :-)

MfG,
Gono.

Bezug
                                        
Bezug
Kompexe Nullstellen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:14 Mo 07.07.2008
Autor: hhashavti

OK, ich entschuldige mich für meinen unpassenden Ton... Wie lautet denn der Beweis?

Gruß und nochmals sorry
hhashavti

Bezug
                                                
Bezug
Kompexe Nullstellen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:01 Mo 07.07.2008
Autor: Gonozal_IX

Wenn die Wurzelgesetze in [mm] \IC [/mm] gelten würen, zeigt man leicht:

[mm]-1 = i^2 = i*i = \sqrt{-1}*\sqrt{-1} = \sqrt{(-1)*(-1)} = \sqrt{1} = 1[/mm]

Man "bezahlt" sozusagen das Gewinnen von neuen Eigenschaften mit dem Verlieren einiger alten.

MfG,
Gono.

Bezug
                                                        
Bezug
Kompexe Nullstellen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Mo 07.07.2008
Autor: hhashavti

Verstehe, und nochmals Entschuldigung für meinen barschen Umgangston.

Allerdings ist es doch nach wie vor so, dass, wenn die Zahl x die Gleichung [mm] x^2=n [/mm] erfüllt und die Zahl y die Gleichung [mm] y^2=m [/mm] erfüllt, die Zahl x*y auch die Gleichung [mm] (x*y)^2=n*m [/mm] erfüllt, oder?

Liebe Grüße

hhashavti

Bezug
                                                                
Bezug
Kompexe Nullstellen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:51 Mo 07.07.2008
Autor: Gonozal_IX

Aufgrund der Kommutativität und Assoziativität der komplexen Multiplikation geht das bei ganzzahligen Exponenten problemfrei. Aber nur deswegen ;-)

MfG,
Gono.

Bezug
                
Bezug
Kompexe Nullstellen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 Fr 04.07.2008
Autor: little_doc

fein soweit sogut.

wieso kann ich die 4 einfach rauskürzen? muss die nicht wieder einfliessen?



Bezug
                        
Bezug
Kompexe Nullstellen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:33 Fr 04.07.2008
Autor: schachuzipus

Hallo little_doc,

> fein soweit sogut.
>  
> wieso kann ich die 4 einfach rauskürzen? muss die nicht
> wieder einfliessen?

Nein, wie oben gesagt, klammere die 4 aus, dann bekommst du

[mm] $4\cdot{}(x^2-2x+10)=0$ [/mm]

Ein Produkt ist genau dann =0, wenn (mindestens) einer der Faktoren =0 ist.

4 ist offensichtlich [mm] \neq [/mm] 0, bleiben die anderen beiden oben herausgefundenen komplexen NSTen des 2.Faktors [mm] $x^2-2x+10$ [/mm]


LG

schachuzipus

>  
>  


Bezug
                                
Bezug
Kompexe Nullstellen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 Fr 04.07.2008
Autor: little_doc

aja, alles klar

vielen Dank

gruess Tobi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]