www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKompl. Grenzwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Kompl. Grenzwertaufgabe
Kompl. Grenzwertaufgabe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompl. Grenzwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 So 30.12.2007
Autor: froopkind

Aufgabe
Ermitteln sie
[mm]\limes_{n\rightarrow\infty}\bruch{(2n^2+1)^{2/3}+(n^3+2n+2)^{1/3}}{(n^3+3)^{4/9}+(3n^4-1)^{1/3}}[/mm]
als Bruch von Wurzelzahlen. Hinweis: Kürzen Sie mit einer geeigneten Potenz von n.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!
Leider habe ich auch hierzu keine Lösung.
Mein Ansatz war es die 'Binome' unter den Wurzeln auszurechnen und dann jeweils ein 'n' vor die Wurzel zu ziehen um dieses dann kürzen zu können. So komme ich zu:
[mm]\limes_{n\rightarrow\infty}\bruch{n*\wurzel[3]{4n+4/n+1/n^3}+n*\wurzel[3]{1+2/n^2+2/n^3}}{n*\wurzel[9]{1/n+24/n^3+54/n^5+108/n^7+81/n^9}+n*\wurzel[3]{1+2/n^2+2/n^3}}=\bruch{n*\wurzel[3]{4n}+1}{0+1}[/mm]

Kann man das so machen? Oder wie wäre der Ansatz besser gewesen?

        
Bezug
Kompl. Grenzwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 So 30.12.2007
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Simon,

das scheint mir nicht zu stimmen.

Deine Rechnung für den Zähler stimmt, aber "umgeformte" Zähler strebt gegen $\infty$

Da ist dir so noch nicht viel geholfen.

Die Rechnung für den Nenner habe ich nicht mehr nachvollzogen...

M.E geht's einfacher, wenn du dir mal jeweils die höchste Potenz von $n$ im Zähler und Nenner anschaust:

im Zähler: Vergleichen wir die erste und zweite Klammer:

in der ersten ist die höchste Potenz $(2n^2+1)^{\frac{2}{3}}\rightarrow (2n^2)^{\frac{2}{3}}=2^{\frac{2}{3}}\cdot{}n^{\frac{4}{3}}$

in der zweiten $(n^3+2n+2)^{\frac{1}{3}}\rightarrow n^1$

Also höchste Potenz im Zähler: $\red{2^{\frac{2}{3}}\cdot{}n^{\frac{4}{3}}}$

im Nenner: Vergleichen wir wieder die erste und zweite Klammer:

erste: $(n^3+3)^{\frac{4}{9}}\rightarrow n^{\frac{4}{3}}$

zweite $(3n^4-1)^{\frac{1}{3}}\rightarrow 3^{\frac{1}{3}}\cdot{}n^{\frac{4}{3}}$

Also kannst du im Nenner $n^{\frac{4}{3}}$ ausklammern

Nenner: $\red{n^{\frac{4}{3}}\cdot{}\left[1+3^{\frac{1}{3}}\right]}$

Also hat der ganze Bruch die "Größenordnung":

$\frac{2^{\frac{2}{3}}\cdot{}n^{\frac{4}{3}}}{\left(1+3^{\frac{1}{3}}\right)\cdot{}n^{\frac{4}{3}}$

Und das strebt für $n\to\infty$ gegen $\frac{2^{\frac{2}{3}}}{1+3^{\frac{1}{3}}$


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]