www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplex diffbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Komplex diffbar
Komplex diffbar < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplex diffbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 So 26.07.2015
Autor: Trikolon

Aufgabe
Ist [mm] f(z)=\bruch{sinh(z)}{z} [/mm] für z [mm] \not=0 [/mm] und f(z)=1 für z=0 holomorph auf [mm] D_1(0)? [/mm]

Hallo,

mir ist klar dass nur die Holomorphie im Nullpunkt zu untersuchen ist. Wie soll ich hier am besten vorgehen? Mit der Definition der komplexen Differenzierbarkeit , also [mm] \limes_{n\rightarrow0} \bruch{sinh(h)-1}{h^2} [/mm]
Da käme ja als GW 0 heraus...

Noch eine grundsätzliche Frage habe ich (unabhängig von diesem Thema: gilt Folgendes: [mm] |e^z|=e^{|z|} [/mm] für z [mm] \in D_r(0) [/mm] mit r>0

        
Bezug
Komplex diffbar: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 So 26.07.2015
Autor: Leopold_Gast

So etwas untersucht man am besten mit Potenzreihen. Die von [mm]\sinh z[/mm] ist ja bekannt und beginnt mit ...? Ja, womit?

Für kanonisch [mm]z = x + \operatorname{i}y[/mm] gilt: [mm]\left| \operatorname{e}^z \right| = \operatorname{e}^x[/mm]

Oder auch so: [mm]\left| \operatorname{e}^z \right| = \operatorname{e^{\operatorname{Re}(z)}}[/mm]

Das ergibt sich leicht aus der Funktionalgleichung der Exponentialfunktion.

Bezug
                
Bezug
Komplex diffbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 So 26.07.2015
Autor: Trikolon

Für den Grenzwert habe ich nun 0 raus. Was kann ich daraus folgern hinsichtlich der Holomorphie?

Bezug
                        
Bezug
Komplex diffbar: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 So 26.07.2015
Autor: Leopold_Gast

[mm]\sinh z = z + \frac{1}{3!} \cdot z^3 + \frac{1}{5!} \cdot z^5 + \ldots[/mm]

[mm]\frac{\sinh z}{z} = 1 + \frac{1}{3!} \cdot z^2 + \frac{1}{5!} \cdot z^4 + \ldots[/mm]

Wie kann da für [mm]z \to 0[/mm] der Grenzwert 0 sein?

Bezug
                                
Bezug
Komplex diffbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:42 Mo 27.07.2015
Autor: Trikolon

Dieser GW ist ja gar nicht gefragt. Gesucht ist der GW von [mm] (sinh(h)-h)/h^2 [/mm] für h gg 0. Der ergibt sich aus der Definition der komplexen Diffbarkeit.

Bezug
                                        
Bezug
Komplex diffbar: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Mo 27.07.2015
Autor: fred97


> Dieser GW ist ja gar nicht gefragt. Gesucht ist der GW von
> [mm](sinh(h)-h)/h^2[/mm] für h gg 0. Der ergibt sich aus der
> Definition der komplexen Diffbarkeit.

Damit ist f in 0 komplex diffbar

Fred


Bezug
                                                
Bezug
Komplex diffbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Mo 27.07.2015
Autor: Trikolon

Wie ,,damit'' ist f komplex diffbar? Der GW muss ja erst mal bestimmt werden mit Hilfe der Reihendarstellung. Was sollte dann heraus kommen?

Bezug
                                                        
Bezug
Komplex diffbar: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Di 28.07.2015
Autor: Leopold_Gast

Wir haben offenbar von verschiedenen Termen und ihren Grenzwerten gesprochen. Ich übernehme jetzt einmal deine Version. Du stellst direkt den Differenzenquotienten der Funktion [mm]f(z) = \frac{\sinh z}{z}[/mm] an der Stelle [mm]z_0 = 0[/mm] auf und untersuchst ihn. Nach deinen eigenen Worten "Für den Grenzwert habe ich nun 0 raus" hast du den Grenzwert bestimmt, ohne uns allerdings zu verraten, wie du es getan hast. Damit klar ist, wovon wir reden:

[mm]\lim_{h \to 0} \frac{f(h)-f(0)}{h} = \lim_{h \to 0} \frac{\sinh h - h}{h^2} \underbrace{= 0}_{\text{von dir behauptet}}[/mm]

Deshalb konnte fred97 zurecht sagen: "Damit ist f in 0 komplex diffbar."

Bezug
                                                                
Bezug
Komplex diffbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 Di 28.07.2015
Autor: Trikolon

Was ich mich ja nur gefragt hatte: Warum muss 0 raus kommen damit es komplex diffbar ist. Was wäre z.B. gewesen, wenn 1 raus gekommen wäre?

Bezug
                                                                        
Bezug
Komplex diffbar: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Di 28.07.2015
Autor: Leopold_Gast

Das ist ein Mißverständnis. Auch wenn 28,072015 herausgekommen wäre, wäre f komplex differenzierbar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]