www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKomplexe Abbildung - Fläche?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Komplexe Abbildung - Fläche?
Komplexe Abbildung - Fläche? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Abbildung - Fläche?: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:33 Do 14.09.2006
Autor: mathwizard

Aufgabe
Der komplexe Einheitskreis [z [mm] \in \IC; [/mm] |z| = 1] hat unter der Abbildung z [mm] \mapsto [/mm] f(z) = z - [mm] z^{-2} [/mm] das Bild eines Kleeblats mit drei Blättern. Bestimme den Flächeninhalt eines dieser Blätter.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Habe gedacht, das sei ziemlich einfach:

(1) |z| = [mm] x^2 [/mm] + [mm] y^2 [/mm] = 1

(2) [mm] z-z^{-2} [/mm] = x+i*y - [mm] \bruch{1}{x+i*y} [/mm] = ... = x-1 + i*(y+2xy)

Nun weiss ich aber nicht wie weiter??

Wenn ich es auf eine schlaue Form bringen würde (y+2xy durch x-1 ausdrücken, oder etwas ähnliches.. vielleicht aber auch mit einem Winkel alpha, dann könnte ich nur noch die Greensche Formel benutzen, und hätte:

[mm] \mu(B) [/mm] = [mm] \integral_{\partial B}^{}{x dy} [/mm]


Danke für alle Ideen, Lösungsvorschläge... :)

        
Bezug
Komplexe Abbildung - Fläche?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Do 14.09.2006
Autor: Leopold_Gast

Parametrisiere den Einheitskreis durch [mm]w = \operatorname{e}^{\operatorname{i}t}[/mm]. Dann hat das Kleeblatt die Parameterdarstellung

[mm]z = w - w^{-2} = \operatorname{e}^{\operatorname{i}t} - \operatorname{e}^{-2 \operatorname{i}t} = \left( \cos{t} - \cos{(2t)} \right) + \operatorname{i} \left( \sin{t} + \sin{(2t)} \right)[/mm]

oder reell geschrieben:

[mm]x = \cos{t} - \cos{(2t)} \, , \ \ y = \sin{t} + \sin{(2t)}[/mm]

[Dateianhang nicht öffentlich]

Das Parameterintervall für das erste Blatt ist [mm]\left[ 0 \, , \, \frac{2}{3} \pi \right][/mm]. Das Blatt wird dabei allerdings negativ umlaufen. Bei Anwendung der Greenschen Formel mußt du das durch eine Vorzeichenänderung berücksichtigen. Numerisch habe ich [mm]1{,}0472[/mm] als Blattinhalt bekommen, was ganz nach [mm]\frac{\pi}{3}[/mm] als exaktem Wert aussieht. Viel Spaß beim Lösen des reellen Integrals.

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
Komplexe Abbildung - Fläche?: Nachwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:45 Do 14.09.2006
Autor: mathwizard

Danke Leopold !.. manchmal kann Mathematik ja so schön sein. :D

Hab gemerkt dass das Integral gar nicht so schwer ist,
wenn man als Flächenformel [mm] 0.5*\integral_{\mu B}^{}{xdy - ydx} [/mm] nimmt,
dann streicht sich das meiste Weg und es bleibt nur noch [mm] 0.5*\integral_{\bruch{2\pi}{3}}^{0}{cos(3t) - 1 dt} [/mm] übrig.. was natürlich [mm] \pi/3 [/mm] ergibt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]