www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Differbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Komplexe Differbarkeit
Komplexe Differbarkeit < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Differbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 Sa 21.04.2012
Autor: kiwibox

Hallo,

ich versuche vergeblich zu zeigen, dass f(z)=|z| für z [mm] \in \IC [/mm] nicht komplex diffbar ist.
Mir ist bisher nur die Definition von der komplexen Diffbarkeit bekannt: Also
[mm] \limes_{h\rightarrow 0} \bruch{f(z+h)-f(z)}{h} [/mm] existiert.

Das heißt ja in meinem Fall, [mm] \limes_{h\rightarrow 0} \bruch{f(z+h)-f(z)}{h} [/mm] existiert nicht, also es gibt min. zwei verschiedene Werte. Nun habe ich gesehen, dass man für [mm] \overline{z} [/mm] einfach für z zwei verschiedene Nullfolgen wählt. So wollte ich das auch machen, allerdings stellen sich bei mir beim Umformen die Probleme schon ein:

[mm] \limes_{h\rightarrow 0} \bruch{f(z+h)-f(z)}{h} [/mm] = [mm] \limes_{h\rightarrow 0} \bruch{|z+h|-|z|}{h} [/mm] = [mm] \limes_{h\rightarrow 0} \bruch{\wurzel{(z+h)(\overline{z+h})}-\wurzel{(z*\overline{z}}}{h} [/mm]
= [mm] \limes_{h\rightarrow 0} \bruch{(z+h)(\overline{z+h})-z*\overline{z}}{h*\wurzel{(z+h)(\overline{z+h})}+\wurzel{z*\overline{z}}} [/mm]

Und wie mache ich hier nun weiter? Ich kann doch hier doch noch nicht meine Folge für h einsetzen, oder? Oder soll ich hier noch für z=x+iy und h=s+it einsetzen und weiter umformen?

Viele Grüße

        
Bezug
Komplexe Differbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:50 So 22.04.2012
Autor: fred97

In [mm] \limes_{h\rightarrow 0} [/mm] wähle einmal h [mm] \in \IR [/mm] und dann h [mm] \in [/mm] $i* [mm] \IR$ [/mm]

FRED

Bezug
        
Bezug
Komplexe Differbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:51 Mo 23.04.2012
Autor: kiwibox

okay, danke. dann probiere ich das gleich mal aus ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]