Komplexe Fkt ableiten + Skizze < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:50 Mi 28.12.2005 | Autor: | depp |
Aufgabe | Für t = Zeit und [mm] \omega \in \IR[/mm] (Kreisfrequenz) beschreibt f : [mm] \IR \to \IC[/mm], [mm] f(t) = re^{i\omega t} [/mm] eine gleichförmige Kreisbewegung mit Radius r. Berechnen Sie f'(t) (Geschwindigkeitsvektor) und f''(t) (Beschleunigungsvektor) sowie deren Beträge und skizzieren Sie die Vektoren f'(t) und f''(t) am Kreis. |
Hallo,
das Problem bei dieser (Übungs-) Aufgabe ist für mich, dass sich die 1. und 2. Ableitung offenbar sehr einfach bestimmen lassen, aber bei der 1. Ableitung weiß ich weder, wie ich den Betrag bestimmen kann, noch wie die dazugehörige Skizze aussieht. Ich komme auf [mm]f'(t) = i \omega re^{i \omega t}[/mm], daran stört mich der Faktor i. Bei der 2. Ableitung würde daraus ja [mm]i^2 = -1[/mm], das sieht wieder nach der normalen Euler Darstellung aus. Kann mir bitte jemand weiter helfen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:02 Mi 28.12.2005 | Autor: | felixf |
> Für t = Zeit und [mm]\omega \in \IR[/mm] (Kreisfrequenz) beschreibt f : [mm]\IR \to \IC,[/mm] [mm]f(t) = re^{i\omega t} [/mm] eine gleichförmige Kreisbewegung mit Radius r. Berechnen Sie f'(t) (Geschwindigkeitsvektor) und f''(t) (Beschleunigungsvektor) sowie deren Beträge und skizzieren Sie die Vektoren f'(t) und f''(t) am Kreis.
> Hallo,
>
> das Problem bei dieser (Übungs-) Aufgabe ist für mich, dass sich die 1. und 2. Ableitung offenbar sehr einfach bestimmen lassen, aber bei der 1. Ableitung weiß ich weder, wie ich den Betrag bestimmen kann, noch wie die dazugehörige Skizze aussieht. Ich komme auf [mm]f'(t) = i \omega re^{i \omega t}[/mm], daran stört mich der Faktor i. Bei der 2. Ableitung würde daraus ja [mm]i^2 = -1[/mm], das sieht wieder nach der normalen Euler Darstellung aus. Kann mir bitte jemand weiter helfen?
Weisst du, wie man die Multiplikation zweier komplexer Zahlen geometrisch (also in der Ebene) deutet? Die Laengen der Vektoren werden multipliziert und die Winkel addiert. So. Die Zahl $i$ hat (als Vektor in der Ebene) die Laenge 1 und den Winkel [mm] $\frac{\pi}{2}$, [/mm] also $i = [mm] e^{i \pi/2}$. [/mm] Also was kommt heraus, wenn du $i$ mit $r [mm] \omega e^{i \omega t}$ [/mm] multiplizierst?
(Das [mm] $i^2 [/mm] = -1$ ist sieht man damit uebrigens auch sehr schnell.)
Damit solltest du nun auch die erste Ableitung malen koennen
LG & HTH, Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:40 Mi 28.12.2005 | Autor: | depp |
Danke, hat mir sehr geholfen!
|
|
|
|