www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Gleichung
Komplexe Gleichung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Gleichung: Bitte um Ergebniskontrolle
Status: (Frage) beantwortet Status 
Datum: 21:43 So 06.03.2005
Autor: cagivamito

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, ich habe hier einen Lösungsvorschlag, und bräuchte mal jemand, der sich das anschaut. Habe derzeit keine Sicherheit ob ich das so richtig gemacht habe.

x + 2iy = 2i³
ix + iy - y = i

Zweite Gleichung mit i multipliziert und dann mit der ersten Gleichung addiert:

-y + iy = 2i³ - 1

weiter umgeformt:

y(-1+i) = -2i - 1

...

y = (-2i - 1) / (-1 + i)

mit (-1 -i)/(-1 -i) erweitert...

Ergebnis für y:  y= -1 + 3i / 2

Heißt Realteil: -1/2
Imaginärteil: 3/2 i

Dieses Y in die erste Gleichung eingesetzt ergibt folgendes x:

x = -3i - 3

Realteil: -3
Imaginärteil: -3 i

----------------------------

Ist das soweit ok? Wäre um Antworten sehr dankbar.

Gruß Jens





        
Bezug
Komplexe Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 So 06.03.2005
Autor: Christian

Hi.

> x + 2iy = 2i³
>  ix + iy - y = i
>  
> Zweite Gleichung mit i multipliziert und dann mit der
> ersten Gleichung addiert:
>  
> -y + iy = 2i³ - 1
>  
> weiter umgeformt:
>  
> y(-1+i) = -2i - 1
>  
> ...
>  
> y = (-2i - 1) / (-1 + i)
>  
> mit (-1 -i)/(-1 -i) erweitert...
>  
> Ergebnis für y:  y= -1 + 3i / 2
>  
> Heißt Realteil: -1/2
>  Imaginärteil: 3/2 i

[ok] Soweit sehr gut!

> Dieses Y in die erste Gleichung eingesetzt ergibt folgendes
> x:
>  
> x = -3i - 3
>  
> Realteil: -3
>  Imaginärteil: -3 i

Hier hab ichwas anderes:

[mm]x+2i(-\frac{1}{2}+\frac{3}{2}i)=-2i[/mm]
[mm]\Rightarrow x=-2i+i+3=3-i[/mm]

Diese Rechnung solltest Du am besten nochmal ausführlich nachvollziehen.

Gruß,
Christian

Bezug
                
Bezug
Komplexe Gleichung: Danke
Status: (Frage) beantwortet Status 
Datum: 23:24 So 06.03.2005
Autor: cagivamito

HI,

danke für die flotte Antwort. Habe das nochmals nachgerechnet und ich habe ein Vorziechen vertauscht, dein Ergebnis ist also richtig.

Jetzt habe ich noch eine Frage , wie die Aufgabe weiter zu lösen wäre.
Wenn ich jetzt die Werte in die Gaußsche Zahlenebene eintragen soll, muss ich dann einfach die Werte, die ich für x und y ausgerechnet habe einzeln in die Gaußsche Zahlenebene eintragen? Wie das geht wäre mir klar.

Gruß Jens

Bezug
                        
Bezug
Komplexe Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mo 07.03.2005
Autor: Max

Hallo Jens,

die komplexen Zahlen $a+bi$ werden in der []komplexen Zahleneebene als Punkte $(a|b)$ gekennzeichnet, wo bei die Realachse ($x$-Achse) die Einheit $1$ und die Imaginärachse ($y$-Achse) die Einheit $i$ hat. Üblicherweise zeichnet man dann $z=a+bi$ als Vektor (Pfeil) vom Ursprung bis zum Punkt $(a|b)$.

Gruß Brackhaus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]