www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Gleichung
Komplexe Gleichung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Gleichung: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:03 Di 09.07.2013
Autor: Marcel88

Aufgabe
Zeigen Sie die Richtigkeit der folgenden Gleichung: [mm] log_{i}(z) [/mm] = [mm] \bruch{2*ln(z)}{i*\pi} [/mm]

hey,

leider habe ich kein Idee wie ich die Aufgabe lösen kann ich hatte nur die Idee den Logarithmus auf der linken Seite zu beseitigen aber ich glaube das ist der falsche Weg. Ich wäre für einen Tipp dankbar.


Viele Grüße


Marcel

        
Bezug
Komplexe Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Di 09.07.2013
Autor: Diophant

Hallo,

das geht wie im Reellen auch bei solchen Aufgaben: einfach die Gleichung exponieren. Man muss nur beachten, dass die Basis des Logarithmus links die imaginäre Einheit ist.

Betrachte die Gleichung

[mm] z=i^{\bruch{2*ln(z)}{i*\pi}} [/mm]

und beachte dabei auch noch die Eulersche Darstellung von i:

[mm] i=e^{i*\bruch{\pi}{2}} [/mm]

Dann löst sich hier alles sehr schnell in Wohlgefallen auf. :-)


Gruß, Diophant

Bezug
                
Bezug
Komplexe Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Di 09.07.2013
Autor: Marcel88

hey,

sorry ich glaube ich habe gerade ein ziemliches Brett vor dem Kopf
bzw. bin mir nicht sicher ob das richtig ist :

$ [mm] z=e^{i*\bruch{1}{2}*\bruch{2\cdot{}ln(z)}{i\cdot{}\pi}} [/mm] $

z = [mm] e^{\bruch{ln(z)}{\pi}} [/mm]

und falls was nun?

Viele Grüße

Marcel


Bezug
                        
Bezug
Komplexe Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Di 09.07.2013
Autor: Diophant

Hallo,

wo ist bei dir im Zähler des Exponenten das [mm] \pi [/mm] geblieben? Nochmal: es ist

[mm] i=e^{i*\bruch{\pi}{2}} [/mm]

Und die Kenntnis der Eulerschen Darstellung darf vorausgesetzt werden, wenn man sich mit komplexen Logarithmen befasst.

Weiter ist auch im Komplexen natürlich

[mm] e^{ln(z)}=z [/mm]

Unabhängig von der Mehrdeutigkeit der komplexen Logarithmusfunktion. Überhaupt ist es eine wichtige Zusatzüberlegung hier, dass man sich klar macht, dass diese Mehrdeutigkeit hier keine Bedeutung hat (weshalb?).

Und eine weitere interessante Frage ist ja auch die nach dem Definitionsbereich des Logarithmus zur Basis i ...


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]