www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraKomplexe Lösungen finden
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Komplexe Lösungen finden
Komplexe Lösungen finden < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Lösungen finden: Prüfungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 18:44 Di 14.03.2006
Autor: Esperanza

Aufgabe
Bestimmen Sie alle komplexen Lösungen der Gleichung [mm] x^3+27i=0 [/mm]

Hallo.

Ich übe gerade für eine Matheklausur und habe eine Aufgabe vor mir, mit der ich nicht zurecht komme.

Die Lösung dazu lautet:

[mm] z_{j}=3(cos(\pi/2+(j-1)2\pi/3)+isin(\pi/2+(j-1)2\pi/3)) [/mm] j=1,2,3

Explizit:
[mm] z1=3(cos(\pi/2)+isin(\pi/2)) [/mm] =3i
[mm] z2=3(cos(7\pi/6)+isin(7\pi/6)) =3(-\wurzel{3/2}-i/2) \approx-2,5981-1,5i [/mm]
[mm] z3=3(cos(11\pi/6)+isin(11\pi/6)) =3(\wurzel{3/2}-i/2) \approx-2,5981-1,5i [/mm]

Ich habe leider überhaupt keinen Schimmer wie ich dort hin gelange. Mich irritiert das [mm] x^3...wenn [/mm] es [mm] x^2 [/mm] wäre wüsste ich wie es geht.

Kann mir jemand erklären wie ich darauf komme? Und was bedeuten die j=1,2,3? (Wieso 3 Werte?)

Esperanza

        
Bezug
Komplexe Lösungen finden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Di 14.03.2006
Autor: dormant

Hi!

> [mm]z_{j}=3(cos(\pi/2+(j-1)2\pi/3)+isin(\pi/2+(j-1)2\pi/3))[/mm]
> j=1,2,3

Das ist ne geile Lösung! Sag mal deinem Prof nen schönen Gruß von mir.

> Ich habe leider überhaupt keinen Schimmer wie ich dort hin
> gelange. Mich irritiert das [mm]x^3...wenn[/mm] es [mm]x^2[/mm] wäre wüsste
> ich wie es geht.

Die Vorgehensweise ist bei [mm] x^{3} [/mm] und bei [mm] x^{2} [/mm] eigentlich gleich. Man soll [mm] x\in\IC [/mm] als x:=a+ib mit a, b [mm] \in\IR [/mm] darstellen und dann a und b bestimmen. In deinem Fall würde das bedeuten:

[mm] (a+ib)^{3}+i27=0 \gdw [/mm]
[mm] \gdw a^{3}-3ab^{2}+i(3a^{2}b-b^3+27)=0. [/mm]

Dann sollst du das reelle System:

[mm] a^{3}-3ab^{2}=0 [/mm] und
[mm] 3a^{2}b-b^3+27=0 [/mm]

lösen.


> Kann mir jemand erklären wie ich darauf komme? Und was
> bedeuten die j=1,2,3? (Wieso 3 Werte?)

Drei Werte, weil die Gleichung 3 Lösungen hat anscheinend. Jede Lösung erhälts du indem du für j 1, 2 oder 3 in die allgemeine Lösung einsetzst.

Gruß,

dormant

Bezug
        
Bezug
Komplexe Lösungen finden: allgemeine Lösung
Status: (Antwort) fertig Status 
Datum: 20:03 Di 14.03.2006
Autor: Mr.Peanut

[mm] $z^n=a$ [/mm]

hatt immer Volgende Lösung:
$ [mm] z_{k}= \root [/mm] n [mm] \of [/mm] {|a|}   [mm] \left(cos(\bruch{\varphi+2\pi k}{n})+i sin(\bruch{\varphi+2\pi k}{n})\right) [/mm] $

oder
$ [mm] z_{k}= \root [/mm] n [mm] \of [/mm] {|a|} [mm] e^{i({\bruch{\varphi+2\pi k}{n}})} [/mm]  $

k=0,1,..,n-1


so ich hoffe war nicht ganz an der sache vorbei.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]