www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Nullstellen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Komplexe Nullstellen
Komplexe Nullstellen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Nullstellen: Berechnung
Status: (Frage) beantwortet Status 
Datum: 16:10 So 25.11.2007
Autor: dk-netz

Aufgabe
Berechnen Sie die Nullstellen der folgenden Plynome!
Geben Sie je eine Faktorisierung der Polynome über [mm] \IC [/mm] und über [mm] \IR [/mm] an.
a) K [mm] \to [/mm] K, x [mm] \mapsto f_K(x):=4x^3+8x^2-11x+3 [/mm] für alle K [mm] \in {\IC, \IR} [/mm]
b) K [mm] \to [/mm] K, c [mm] \mapsto f_K(x):=6x^4-25x^3+32x^2+3x-10 [/mm] für alle K [mm] \in {\IC, \IR} [/mm]

Hallo,

die reellen Nullstellen lassen sich ja über Probieren und Polynomdivision berechnen.
Wie funktioniert das mit den komplexen Nullstellen.
Bei a) sind die reellen Nullstellen -3 und eine doppelte bei 1/2. Also sinds insgesamt 3 Nullstellen. Sind die in [mm] \IC [/mm] dann die selben? Oder wie kann ich diese berechnen?
Danke!

Gruß
Daniel

        
Bezug
Komplexe Nullstellen: Frage:
Status: (Frage) beantwortet Status 
Datum: 18:14 So 25.11.2007
Autor: dk-netz

So ich habs jetzt rausbekommen.
Die Nullstellen sind jetzt sowohl in R als auch in C klar.
Jetzt noch ne Frage zu den Faktorisierungen:
bei a) habe ich jetzt: [mm] (x+3)(x-\bruch{1}{2})^2*4. [/mm] Alle Nullstellen liegen im reellen Bereich. Dehalb müsste ja die Faktorisierung für R und C gleich sein, oder?
Bei b) kommt (x+0.5)(x-2/3)(x-2-i)(x-2+i)6. Jetzt die Frage: das scheint ja eher die Lösung für C zu sein. Muss ich dann für R einfach die qaudratische Gleichung, aus der das 2+i entstanden ist, stehen lassen?

Gruß
Daniel

Bezug
                
Bezug
Komplexe Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 So 25.11.2007
Autor: safrazap

Genau Daniel,
in der Zerlegung in [mm] \IR [/mm] bleibt der Faktor [mm] (x^2-4x+5) [/mm] so stehen.

Bezug
        
Bezug
Komplexe Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 25.11.2007
Autor: leduart

Wenn ein Polynom dritten Grades 3 reelle Nst. hat, dann sind das auch seine Komplexen Nst.
wie man anders als durch raten auf die ersten Nst. des Pol. 4ten Grades kommt. kann ich dir auch nicht sagen. es gibt ein irre kompliziertes Verfahren, das aber fast niemand beherrscht.
Wenn du 2 geraten hast kannst du durch ddividieren und den Rest dann mit Polynomdivision.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]