www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Zahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahl
Komplexe Zahl < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:21 So 30.12.2007
Autor: ebarni

Aufgabe
[mm]\bruch{1}{i*y}-1 = -i*y-1 [/mm] ????

Hallo alle!

Das ist die Frage:

[mm] \bruch{1}{i*y}-1 = -i*y-1 [/mm] soll also gleich sein.

Wenn ich konjungiert komplex erweitere komme ich auf:

[mm]\bruch{1}{i*y}-1 = \bruch{1}{i*y} * \bruch{-i*y}{-i*y} -1 = \bruch{-i*y}{-i^{2}*y^{2}} -1 = -\bruch{i}{y}-1[/mm].

Ist also [mm] -\bruch{i}{y}-1 = -i*y-1 [/mm]  ????

Viele Grüße, Andreas

        
Bezug
Komplexe Zahl: Tipp
Status: (Antwort) fertig Status 
Datum: 02:19 So 30.12.2007
Autor: Halloomid1493

Deine Erweiterung ist soweit richtig aber das du nicht unbedingt nicht tun,also du nimmst an,dass diese gleichung richtig ist,dann rechnest du Y aus,indem du die beiden Seiten der Gleichung mit iy multiplizierst.daraus folgt: Y=+/-1,hier musst du Fallunterscheidung durchführen,und wenn du die beiden Fällen in der Gleichung rückwärts einsetzst,kriegst du eine Wahre Aussage,so ist die Gleichung bewiesen,aber diese Gleichung ist nur,wenn y=+/-1 ist,richtig,nicht allgemein!

Bezug
                
Bezug
Komplexe Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:26 Di 01.01.2008
Autor: ebarni

Hallo Halloomid1493,

vielen Dank für Deinen Tipp!

und übrigens [willkommenmr] und alles Gute für 2008!

Viele Grüße, Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]