www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Mo 28.04.2014
Autor: Marie886

Aufgabe
Stellen Sie beide Werte des Ausdrucks in der Form a+i*b [mm] (a,b\in \IR [/mm] )

[mm] \bruch{3+4i+ \wurzel{-2i}}{3+i } [/mm]

Hallo,

ich möchte das oben angegeben Beispiel berechnen.

Zuerst muss ich den Ausdruck [mm] \wurzel{-2i} [/mm] vereinfachen.

[mm] \wurzel{-2i}=\wurzel{2}*\wurzel{-i}=\wurzel{2}*\wurzel{i^3}= (2^\bruch{1}{3}*i)^\bruch{3}{2} [/mm]

mit [mm] z^n= [r^n, n*\varphi] [/mm]

und nun komme ich auch nicht mehr weiter.

LG


        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Mo 28.04.2014
Autor: leduart

Hallo
[mm] -i=1*e^{-i\pi/2}=e^{3*pi/2} [/mm]
damit ist [mm] (-i)^{1|2}=\pm e^{i*3*pi/4}=cos\3/4*\pi)+isin(3/4*\pi) [/mm]
in deiner Schreibweise: -i=(1, 3/2·p)i;  [mm] (-i)^{1/2}=(1,3/4\pi) [/mm] usw.
ich würde zuerst mit dem konjugiert komplexen des nenners erweitern, also mit 3-i
Gruß leduart

Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Mo 26.05.2014
Autor: Marie886

Habe das Beispiel nun gelöst. Jedoch nicht in der Eulerschen Form.

Zu Beginn habe ich mich der [mm] \wurzel{-2i} [/mm] gewidmet und daraus  r und [mm] \Phi [/mm] berechnet: a=0, b=-2

r=g= [mm] \wurzel{a^2+b^2}=\wurzel{0^2+(-2)^2}=\wurzel{4}= [/mm] 2

Für [mm] \Phi [/mm] habe ich mir die Real- und Imaginarächse aufgezeichent, b(also 2) und a=0--> somit komme ich für [mm] \Phi [/mm] auf einen Winkel von 90° also [mm] \bruch{\pi}{2} [/mm]

FRAGE: Wieso muss ich zu [mm] \bruch{\pi}{2} [/mm] noch ein [mm] \pi [/mm] dazurechnen? Habe es aber trotzdem gemacht

[mm] w=[g,\Phi]-->w^n=[g^n, n\Phi]-->w^2=[2,\bruch{3 \pi}{2}]-->w=[\wurzel{2},n\bruch{3\pi}{2}] [/mm]

Nun bekomme ich 2 Lösungen heraus:

[mm] 2\Phi [/mm] = [mm] \bruch{3\pi}{2}-> \Phi_1 [/mm] = [mm] \bruch{3\pi}{4} [/mm]
[mm] 2\Phi [/mm] = [mm] \bruch{3\pi}{2}+2\Pi-> \Phi_2 [/mm] = [mm] \bruch{7\pi}{4} [/mm]

Somit erhalte ich:

[mm] w_1=[\wurzel{2}, \bruch{3\pi}{4}] [/mm]
[mm] w_2=[\wurzel{2}, \bruch{7\pi}{4}] [/mm]

Dies setze ich nun in die Polardarstellung ein: [mm] z=r*cos\phi+i*r*sin\phi [/mm]

[mm] z_1=\wurzel{2}*cos\bruch{3\pi}{4}+i*\wurzel{2}*sin\bruch{3\pi}{4}= \wurzel{2}*(-\bruch{\wurzel{2}}{2})+i*\wurzel{2}*\bruch{\wurzel{2}}{2}= [/mm] -1+i

[mm] z_2=\wurzel{2}*cos\bruch{7\pi}{4}+i*\wurzel{2}*sin\bruch{7\pi}{4}= \wurzel{2}*\bruch{\wurzel{2}}{2}+i*\wurzel{2}*(-\bruch{\wurzel{2}}{2})= [/mm] 1-i

das berechnete [mm] z_1 [/mm] und [mm] z_2 [/mm] setze ich nun in die Angabe anstelle von [mm] \wurzel{-2i} [/mm] ein:

[mm] \bruch{3+4i+\wurzel{-2i}}{3+i}=\bruch{3+4i+{z_1,_2}}{3+i} [/mm]

-> [mm] \bruch{3+4i+(-1+i)}{3+i}= \bruch{3+4i-1+i}{3+i}*\bruch{3-i}{3-i}=\bruch{9-3i+12i-4i^2-3+i+3i-i^2}{9-i^2}=\bruch{6+13i+5}{10}=\bruch{11+13i}{10} [/mm]

[mm] ->\bruch{3+4i+1-i}{3+i}*\bruch{3-i}{3-i}=\bruch{9-3i+12i-4i^2+3-i-3i+i^2}{9-i^2}=\bruch{12+6i+3}{10}=\bruch{15+6i}{10}=\bruch{15}{10}+\bruch{6i}{10}=\bruch{3}{2}+\bruch{3i}{5} [/mm]

Stimmt das nun so??

Liebe Grüße,
Marie886


Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Mo 26.05.2014
Autor: Herby

Hallo Marie,

> Habe das Beispiel nun gelöst. Jedoch nicht in der
> Eulerschen Form.

>

> Zu Beginn habe ich mich der [mm] \wurzel{-2i}[/mm] gewidmet und
> daraus r und [mm]\Phi[/mm] berechnet: a=0, b=-2

>

> r=g= [mm]\wurzel{a^2+b^2}=\wurzel{0^2+(-2)^2}=\wurzel{4}=[/mm] 2

>

> Für [mm]\Phi[/mm] habe ich mir die Real- und Imaginarächse
> aufgezeichent, b(also 2) und a=0--> somit komme ich für
> [mm]\Phi[/mm] auf einen Winkel von 90° also [mm]\bruch{\pi}{2}[/mm]

>

> FRAGE: Wieso muss ich zu [mm]\bruch{\pi}{2}[/mm] noch ein [mm]\pi[/mm]
> dazurechnen?

weil [mm] \pi/2 [/mm] in die positive Richtung (Drehrichtung entgegen Uhrzeigersinn von der positiven reellen Achse aus gesehen) auf der imaginären Achse zeigt, dein Wert -2 aber entgegengesetzt ist. Du hättest auch mit [mm] -\pi/2 [/mm] rechnen können, quasi Drehrichtung im Uhrzeigersinn.

> Habe es aber trotzdem gemacht

>

> [mm]w=[g,\Phi]-->w^n=[g^n, n\Phi]-->w^2=[2,\bruch{3 \pi}{2}]-->w=[\wurzel{2},n\bruch{3\pi}{2}][/mm]

>

> Nun bekomme ich 2 Lösungen heraus:

>

> [mm]2\Phi[/mm] = [mm]\bruch{3\pi}{2}-> \Phi_1[/mm] = [mm]\bruch{3\pi}{4}[/mm]
> [mm]2\Phi[/mm] = [mm]\bruch{3\pi}{2}+2\Pi-> \Phi_2[/mm] = [mm]\bruch{7\pi}{4}[/mm]

>

> Somit erhalte ich:

>

> [mm]w_1=[\wurzel{2}, \bruch{3\pi}{4}][/mm]
> [mm]w_2=[\wurzel{2}, \bruch{7\pi}{4}][/mm]

>

> Dies setze ich nun in die Polardarstellung ein:
> [mm]z=r*cos\phi+i*r*sin\phi[/mm]

>

> [mm]z_1=\wurzel{2}*cos\bruch{3\pi}{4}+i*\wurzel{2}*sin\bruch{3\pi}{4}= \wurzel{2}*(-\bruch{\wurzel{2}}{2})+i*\wurzel{2}*\bruch{\wurzel{2}}{2}=[/mm]
> -1+i

>

> [mm]z_2=\wurzel{2}*cos\bruch{7\pi}{4}+i*\wurzel{2}*sin\bruch{7\pi}{4}= \wurzel{2}*\bruch{\wurzel{2}}{2}+i*\wurzel{2}*(-\bruch{\wurzel{2}}{2})=[/mm]
> 1-i

>

> das berechnete [mm]z_1[/mm] und [mm]z_2[/mm] setze ich nun in die Angabe
> anstelle von [mm]\wurzel{-2i}[/mm] ein:

>

> [mm]\bruch{3+4i+\wurzel{-2i}}{3+i}=\bruch{3+4i+{z_1,_2}}{3+i}[/mm]

>

> -> [mm]\bruch{3+4i+(-1+i)}{3+i}= \bruch{3+4i-1+i}{3+i}*\bruch{3-i}{3-i}=\bruch{9-3i+12i-4i^2-3+i+3i-i^2}{9-i^2}=\bruch{6+13i+5}{10}=\bruch{11+13i}{10}[/mm]

>

> [mm]->\bruch{3+4i+1-i}{3+i}*\bruch{3-i}{3-i}=\bruch{9-3i+12i-4i^2+3-i-3i+i^2}{9-i^2}=\bruch{12+6i+3}{10}=\bruch{15+6i}{10}=\bruch{15}{10}+\bruch{6i}{10}=\bruch{3}{2}+\bruch{3i}{5}[/mm]

>

> Stimmt das nun so??

ein kleiner Rechenfehler

[mm] \bruch{3+4i+1-i}{3+i}*\bruch{3-i}{3-i}=\bruch{9-3i+12i-4i^2+3-i-3i+i^2}{9-i^2}=\bruch{12+\red{5}i+3}{10}=\bruch{15+\red{5}i}{10}=\bruch{15}{10}+\bruch{\red{5}i}{10}=\bruch{3}{2}+\bruch{1}{2}*i [/mm]

Grüße
Herby
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]