www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Komplexe Zahlen
Komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:36 Sa 04.02.2006
Autor: Tequila

Aufgabe
Wo liegen in der Gaußschen Zahlenebene die Zahlen z [mm] \in \IC [/mm] für die gilt

[mm] z^{2}=|z|^{2} [/mm]

hi folgende aufgabe muss ich lösen
und bekanntlich gilt
z=x+jy,  [mm] |z|=\wurzel{x^{2}+y^{2}} [/mm]

wenn ich das auflöse komme ich irgendwann auf
-jx=y

das sagt mir überhaupt gar nix !
wie kann ich das denn in der gaußschen zahlenebene darstellen?
falls ihr auf andere ergebnisse kommt kann ich ja mal meinen kompletten rechenweg darstellen, aber ich glaube der ist so richtig


        
Bezug
Komplexe Zahlen: habe anderes Ergebnis
Status: (Antwort) fertig Status 
Datum: 16:48 Sa 04.02.2006
Autor: Loddar

Hallo Tequila!


Auf dieses Ergebnis komme ich nicht. Ich habe erhalten:

[mm] $z^2 [/mm] \ = \ [mm] (x+i*y)^2 [/mm] \ = \ ... \ = \ [mm] \blue{x^2-y^2}+i*\red{2xy}$ [/mm]

[mm] $|z|^2 [/mm] \ = \ [mm] |x+i*y|^2 [/mm] \ = \ ... \ = \ [mm] x^2+y^2 [/mm] \ = \ [mm] \blue{x^2+y^2}+i*\red{0}$ [/mm]


Daraus ergibt sich dann folgendes Gleichungssystem:

[mm] $\blue{x^2-y^2} [/mm] \ = \ [mm] \blue{x^2+y^2}$ [/mm]

[mm] $\red{2xy} [/mm] \ = \ [mm] \red{0}$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Komplexe Zahlen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:02 Sa 04.02.2006
Autor: Tequila

Danke für die schnelle Antwort, allerdings versteh ich das nicht ganz!

man bekommt ja im Prinzip raus

[mm] x^{2}+2ixy-y^{2}=x^{2}+y^{2} [/mm]  

richtig ?

Wieso stellst du dann ein Gleichungssystem auf?
"Normalerweise" würde man doch die [mm] x^{2} [/mm] auf beiden Seiten wegstreichen und hätte
2ixy = [mm] 2y^{2} [/mm]
[mm] \gdw [/mm]
ix=y
(da hatte ich wohl einen Dreher im Vorzeichen bei meiner Rechnung)


Laut deinem GS käme raus

[mm] -y^{2}=y^{2} [/mm]
was nur für y = 0 erfüllt ist

2xy=0
[mm] \gdw [/mm]
y=0


gilt nur auf der Reelen Achse (so steht es auch in meinen Lösungen)


wieso wird also nicht weitergerechnet wie ich das mache, sondern ein Gleichungssystem aufgestellt?

Bezug
                        
Bezug
Komplexe Zahlen: Lösung unterschlagen
Status: (Antwort) fertig Status 
Datum: 17:19 Sa 04.02.2006
Autor: Loddar

Hallo Tequila!


Auch Dein Weg führt zum Ziel, allerdings unterschlägst Du die entscheidende Lösung!

$i*2xy \ = \ [mm] 2y^2$ [/mm]

[mm] $\gdw$ $y^2-i*xy [/mm] \ = \ 0$

[mm] $\gdw$ [/mm]   $y*(y-i*x) \ = \ 0$

[mm] $\gdw$ [/mm]   $y \ = \ 0$   oder   $y-i*x \ = \ 0$

Und der 2. Teil kann für reelle $x_$ und $y_$ nie erfüllt werden, da eine reelle Zahl multipliziert mit der imaginären Einheit $i_$ nie eine reelle Zahl ergeben kann.


Hinter meinem Lösungsansatz steckt die Idee, dass zwei komplexe Zahlen genau dann identisch sind, wenn sie sowohl im Realteil als auch im Imaginärteil übereinstimmen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]