www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Komplexe Zahlen
Komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: z = x + iy
Status: (Frage) beantwortet Status 
Datum: 01:27 Mo 12.11.2007
Autor: xcase

Aufgabe
Schreiben Sie die folgenden komplexen Zahlen in der Form z = x + iy mit x,y [mm] \varepsilon \IR [/mm] und geben Sie ihren Betrag an.
(ii) z = [mm] \bruch{i^{3}}{i^{3} - i^{5}} [/mm] .

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Meine Frage:
Wenn ich das ausrechne erreiche ich durch ausklammern ein Endergebnis von [mm] \bruch{1}{2} [/mm] oder wenn ich erweitere...ein Ergebnis von 0?
Ich weiss jetzt gar nicht was als Ergebnis raus kommen soll.
Soweit war mein weg: [mm] \bruch{i^{3}}{i^{3}(1 - i^{2})} [/mm] = [mm] \bruch{1}{1 - (-1)} [/mm] = [mm] \bruch{1}{2} [/mm] .
Wuerde das ueberhaupt der Form z = x + iy entsprechen?...sodass der Imaginaerteil einfach nciht existiert?

MfG Tomi

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:40 Mo 12.11.2007
Autor: Martin243

Hallo,

1/2 stimmt.

> Wuerde das ueberhaupt der Form z = x + iy entsprechen?...sodass der Imaginaerteil einfach nciht existiert?

Du kannst natürlich 1/2 + 0i schreiben, aber es ändert nichts an der Tatsache, dass die Zahl reell ist. Das ist aber auch nicht weiter schlimm, denn die lassen sich ohne Probleme in den Körper der komplexen Zahlen einbetten.


Gruß
Martin

Bezug
                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:22 Mo 12.11.2007
Autor: xcase

Danke fuer die schnelle Hilfe :)
MfG Tomi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]