www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Komplexe Zahlen
Komplexe Zahlen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Fr 15.05.2009
Autor: T_sleeper

Aufgabe
Seien c,d [mm] \in \mathbb{C}. [/mm]

Zeige: [mm]c+d,c\cdot d [/mm] reell [mm] \Leftrightarrow [/mm] c,d reell oder [mm] d=\overline{c}. [/mm]

Hallo,

also [mm] "\Leftarrow" [/mm] ist reines durchrechnen und nicht besonders schwer.
Fragen habe ich nur zu [mm] "\Rightarrow". [/mm]
Dazu:
Seien also c+d, cd reell. Dann z.z. c,d reell oder [mm] d=\overset{-}c. [/mm]
Ich weiß ja, dass c,d an sich komplex sind. Also kann ich sie auch so schreiben: [mm] c=x_1+iy_1, d=x_2+iy_2 [/mm] mit [mm] x_1,x_2,y_1,y_2 \in \mathbb{R}. [/mm]
Ich dachte mir jetzt, dass ich einfach c+d=a setze mit [mm] a\in \mathbb{R}. [/mm]
Das gleiche mache ich dann mit cd=b [mm] \in \mathbb{R}. [/mm]
Wenn ich da dann c und d entsprechend mit [mm] x_1+iy_1 [/mm] usw schreibe und versuche das durchzurechnen, komme ich immer zu einem ziemlichen Durcheinander. Hatte mir das quasi so gedacht:
[mm] c+d=a\Rightarrow [/mm] d=a-c. Das setze ich dann in cd=b ein und es folgt:
[mm] c\cdot [/mm] (a-c)=b.
Aber wie gesagt: das führt mich nicht so ganz dahin, wo ich hin will.

Kann man es besser machen?

Gruß Sleeper

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Fr 15.05.2009
Autor: abakus


> Seien c,d [mm]\in \mathbb{C}.[/mm]
>  
> Zeige: [mm]c+d,c\cdot d[/mm] reell [mm]\Leftrightarrow[/mm] c,d reell oder
> [mm]d=\overline{c}.[/mm]
>  Hallo,
>  
> also [mm]"\Leftarrow"[/mm] ist reines durchrechnen und nicht
> besonders schwer.
>  Fragen habe ich nur zu [mm]"\Rightarrow".[/mm]

Hallo, wenn c+d reell sein sollen, müssen sich eventuell vorhandene Imaginärteile aufheben.
Wenn c*d reel sein soll, muss [mm] r_c(cos\phi_c+i [/mm] sin [mm] \phi_c)* r_d(cos\phi_d+i [/mm] sin [mm] \phi_d) [/mm] reell sein, und damit ist das Argument [mm] \phi_c+\phi_d [/mm] Null.
Denk mal drüber nach.
Gruß Abakus

>  Dazu:
>  Seien also c+d, cd reell. Dann z.z. c,d reell oder
> [mm]d=\overset{-}c.[/mm]
>  Ich weiß ja, dass c,d an sich komplex sind. Also kann ich
> sie auch so schreiben: [mm]c=x_1+iy_1, d=x_2+iy_2[/mm] mit
> [mm]x_1,x_2,y_1,y_2 \in \mathbb{R}.[/mm]
> Ich dachte mir jetzt, dass ich einfach c+d=a setze mit [mm]a\in \mathbb{R}.[/mm]
>  
> Das gleiche mache ich dann mit cd=b [mm]\in \mathbb{R}.[/mm]
>  Wenn
> ich da dann c und d entsprechend mit [mm]x_1+iy_1[/mm] usw schreibe
> und versuche das durchzurechnen, komme ich immer zu einem
> ziemlichen Durcheinander. Hatte mir das quasi so gedacht:
>  [mm]c+d=a\Rightarrow[/mm] d=a-c. Das setze ich dann in cd=b ein und
> es folgt:
>  [mm]c\cdot[/mm] (a-c)=b.
>  Aber wie gesagt: das führt mich nicht so ganz dahin, wo
> ich hin will.
>  
> Kann man es besser machen?
>  
> Gruß Sleeper


Bezug
        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mo 18.05.2009
Autor: fred97

Zu $ [mm] "\Rightarrow". [/mm] $

Du hattest: $c = [mm] x_1+iy_1, [/mm] d = [mm] x_2 +iy_2$ [/mm]

Ist c+d reell, so folgt: [mm] $y_1+y_2 [/mm] = 0$, also [mm] $y_2 [/mm] = [mm] -y_1$: [/mm] Somit: $ [mm] d=\overline{c}. [/mm] $.

Ist auch noch [mm] y_1 [/mm] = 0, so folgt $c,d [mm] \in \IR$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]