www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 So 22.01.2012
Autor: mbau16

Aufgabe
Ermitteln Sie [mm] z_{3} [/mm]

[mm] z_{1}=3*(cos(240grad)+i*sin(240grad) [/mm]

[mm] z_{2}=2*(cos(135grad)+i*sin(135grad) [/mm]

[mm] z_{3}=\bruch{4*z_{1}-i}{2*z_{2}+i} [/mm]

Guten Morgen,

[mm] z_{1}=3*(cos(240grad)+i*sin(240grad) [/mm]

[mm] z_{2}=2*(cos(135grad)+i*sin(135grad) [/mm]

[mm] z_{3}=\bruch{4*z_{1}-i}{2*z_{2}+i} [/mm]

[mm] z_{3}=\bruch{4*(3*(cos(240grad)+i*sin(240grad)))-i}{2*(2*(cos(135grad)+i*sin(135grad)))+i} [/mm]

[mm] z_{3}=6(cos(240grad-135grad)+i*sin(240grad-135grad) [/mm]

Ist das so richtig? Was mach ich mit -i im Zähler  und +i im Nenner?

Vielen Dank

Gruß

mbau16

        
Bezug
Komplexe Zahlen: nicht richtig
Status: (Antwort) fertig Status 
Datum: 12:17 So 22.01.2012
Autor: Loddar

Hallo mbau!



> Ermitteln Sie [mm]z_{3}[/mm]
>  
> [mm]z_{1}=3*(cos(240grad)+i*sin(240grad)[/mm]
>  
> [mm]z_{2}=2*(cos(135grad)+i*sin(135grad)[/mm]
>  
> [mm]z_{3}=\bruch{4*z_{1}-i}{2*z_{2}+i}[/mm]
>  Guten Morgen,
>  
> [mm]z_{1}=3*(cos(240grad)+i*sin(240grad)[/mm]
>  
> [mm]z_{2}=2*(cos(135grad)+i*sin(135grad)[/mm]
>  
> [mm]z_{3}=\bruch{4*z_{1}-i}{2*z_{2}+i}[/mm]
>  
> [mm]z_{3}=\bruch{4*(3*(cos(240grad)+i*sin(240grad)))-i}{2*(2*(cos(135grad)+i*sin(135grad)))+i}[/mm]
>  
> [mm]z_{3}=6(cos(240grad-135grad)+i*sin(240grad-135grad)[/mm]

[eek] Wie kommst Du hierauf?

Berechne doch hier die Werte [mm] $\cos^\left(240^\circ\right)$ [/mm] , [mm] $\cos^\left(135^\circ\right)$, $\sin^\left(240^\circ\right)$ [/mm] und [mm] $\sin^\left(135^\circ\right)$ [/mm] .
Das ergibt alles Werte, mit denen man gut weiterrechnen kann.


Gruß
Loddar


Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 So 22.01.2012
Autor: mbau16


> Hallo mbau!
>  
>
>
> > Ermitteln Sie [mm]z_{3}[/mm]
>  >  
> > [mm]z_{1}=3*(cos(240grad)+i*sin(240grad)[/mm]
>  >  
> > [mm]z_{2}=2*(cos(135grad)+i*sin(135grad)[/mm]
>  >  
> > [mm]z_{3}=\bruch{4*z_{1}-i}{2*z_{2}+i}[/mm]
>  >  Guten Morgen,
>  >  
> > [mm]z_{1}=3*(cos(240grad)+i*sin(240grad)[/mm]
>  >  
> > [mm]z_{2}=2*(cos(135grad)+i*sin(135grad)[/mm]
>  >  
> > [mm]z_{3}=\bruch{4*z_{1}-i}{2*z_{2}+i}[/mm]
>  >  
> >
> [mm]z_{3}=\bruch{4*(3*(cos(240grad)+i*sin(240grad)))-i}{2*(2*(cos(135grad)+i*sin(135grad)))+i}[/mm]
>  >  
> > [mm]z_{3}=6(cos(240grad-135grad)+i*sin(240grad-135grad)[/mm]
>  
> [eek] Wie kommst Du hierauf?

Formel:

[mm] \bruch{z_{1}}{z_{2}}=\bruch{r_{1}}{r_{2}}*(cos(\phi_{1}-\phi_{2})+i*sin(\phi_{1}-\phi_{2})) [/mm]

Wenn ich das in die allgemeine Form bringe, wird es sehr kompliziert für mich zu rechnen! Kann ich meine Formel nicht anwenden?

>  
> Berechne doch hier die Werte [mm]\cos^\left(240^\circ\right)[/mm] ,
> [mm]\cos^\left(135^\circ\right)[/mm], [mm]\sin^\left(240^\circ\right)[/mm]
> und [mm]\sin^\left(135^\circ\right)[/mm] .
>  Das ergibt alles Werte, mit denen man gut weiterrechnen
> kann.
>  
>
> Gruß
>  Loddar
>  


Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 So 22.01.2012
Autor: leduart

Hallo
du hast einfach [mm] 4z_1/3z_2 [/mm] ausgerechnet, und solltest wissen, dass man so nen Bruch nicht ausrechnen kann.
du musst [mm] 4z_1-i=w_1 [/mm]  und [mm] 2z_2+i=w_2 [/mm]  erst in die Form [mm] w=r*(cos\phi+isin\phi) [/mm] bringen, wenn du deine formel verwenden willst.  
dazu ist es am einfachsten wirklich die exakten Werte für sin und cos dieser einfachen Winkel einzusetzen.
wenn du [mm] \bruch{a+ib}{c+id} [/mm] hast erweitere mit mit dem konj. kompl des nenners, also mit c-id.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]