www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Zahlenfolge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Komplexe Zahlenfolge
Komplexe Zahlenfolge < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlenfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Mi 28.04.2010
Autor: DasDogma

Aufgabe
Gegeben seien die Zahlenfolgen [mm] \{z_{n} \} [/mm] mit [mm] z_{n}=\bruch{1+i}{n^2} [/mm] und [mm] \{w_{n} \} [/mm] mit [mm] w_{n}=e^{in\bruch{\pi}{4}} [/mm].

Welche der Zahlenfolgen ist konvergent? Begründen Sie Ihre Antowort. Bestimmen Sie gegebenenfalls den Grenzwert.

Hallo mit einander,

wir haben jetzt in der Mathe-Vorlesung mit dem Thema Funktionentheorie begonnen. Folgen waren noch nie so mein Ding, deshalb hoffe ich, dass ihr meine Ergebnisse bestätigen oder mir halt helfen könntet, wenn ich falsch liegen sollte.

Die erste Folge habe ich in Real- und Imaginärteil zerlegt und davon den Grenzwert per Limes bestimmt:

[mm]\limes_{n\rightarrow\infty} \bruch{1}{n^2}=0[/mm]

Dies gilt ja in beiden Fällen.

Die zweite Folge habe ich zunächst folgendermaßen zerlegt:

[mm] w_{n}=e^{in\bruch{\pi}{4}} = cos(n\bruch{\pi}{4})+isin(n\bruch{\pi}{4})[/mm]

Dieser Ausdruck sagt mir dann, dass diese Folge nicht konvergent ist, sondern sich der Wert für [mm] n\to\infty[/mm] immer wieder wiederholen wird, aufgrund der Eigenschaften des Sinus und des Kosinus.

Sind meine Überlegungen richtig?

Es gibt ja auch noch die Herangehensweise mit

[mm]\limes_{n\rightarrow\infty} |z_{n}-z_{0}|=0[/mm]

Mein Problem dabei ist, dass ich nicht ganz verstehe was ich da zu tun hab, weil ich kann ja auch nicht für die erste Folge [mm]n=0[/mm] setzen.

Ich hoffe Ihr könnt mir bei beiden Fragen helfen. Schon einmal danke im Vorraus.

Beste Grüße
DasDogma

        
Bezug
Komplexe Zahlenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Mi 28.04.2010
Autor: schachuzipus

Hallo DasDogma,

> Gegeben seien die Zahlenfolgen [mm]\{z_{n} \}[/mm] mit
> [mm]z_{n}=\bruch{1+i}{n^2}[/mm] und [mm]\{w_{n} \}[/mm] mit
> [mm]w_{n}=e^{in\bruch{\pi}{4}} [/mm].
>  
> Welche der Zahlenfolgen ist konvergent? Begründen Sie Ihre
> Antowort. Bestimmen Sie gegebenenfalls den Grenzwert.
>  Hallo mit einander,
>  
> wir haben jetzt in der Mathe-Vorlesung mit dem Thema
> Funktionentheorie begonnen. Folgen waren noch nie so mein
> Ding, deshalb hoffe ich, dass ihr meine Ergebnisse
> bestätigen oder mir halt helfen könntet, wenn ich falsch
> liegen sollte.
>  
> Die erste Folge habe ich in Real- und Imaginärteil zerlegt
> und davon den Grenzwert per Limes bestimmt:
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{1}{n^2}=0[/mm] [ok]
>  
> Dies gilt ja in beiden Fällen.
>  
> Die zweite Folge habe ich zunächst folgendermaßen
> zerlegt:
>  
> [mm]w_{n}=e^{in\bruch{\pi}{4}} = cos(n\bruch{\pi}{4})+isin(n\bruch{\pi}{4})[/mm] [ok]
>  
> Dieser Ausdruck sagt mir dann, dass diese Folge nicht
> konvergent ist, sondern sich der Wert für [mm]n\to\infty[/mm] immer
> wieder wiederholen wird, aufgrund der Eigenschaften des
> Sinus und des Kosinus.

Das stimmt verbal blumig, aber kannst du das etwas "sauberer" begründen?


> Sind meine Überlegungen richtig?
>  
> Es gibt ja auch noch die Herangehensweise mit
>  
> [mm]\limes_{n\rightarrow\infty} |z_{n}-z_{0}|=0[/mm]
>  
> Mein Problem dabei ist, dass ich nicht ganz verstehe was
> ich da zu tun hab, weil ich kann ja auch nicht für die
> erste Folge [mm]n=0[/mm] setzen.

Na, die Vermutung im 1.Fall ist: GW=0

Also [mm] $\left|\frac{1+i}{n^2}-0\right|=\frac{\sqrt{2}}{n^2}$ [/mm]

Und das kriegst du doch beliebig klein ...

>  
> Ich hoffe Ihr könnt mir bei beiden Fragen helfen. Schon
> einmal danke im Vorraus.

Bitte nur ein "r"

>  
> Beste Grüße
>  DasDogma


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]