www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenKomposition
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Komposition
Komposition < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komposition: Idee
Status: (Frage) beantwortet Status 
Datum: 01:06 So 27.10.2013
Autor: Marcomathik

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Hallo Leute,
ich weiß wann Abbildungen injektiv sind und wann sie surjektiv sind. Auch weiß ich wie Kompositionen gehen. Wir haben gezeigt dass eine Komposition aus zwei inj. Abb. auch inj. ist. Das gilt dann auch bei surj.. Nun frage ich mich aber. Kann man für jedes f eine Komposition aus einer surj. und inj. Abb. aufschreiben? Wie geht das? ich habe echt keine Ahnung wie ich darauf kommen soll. Hat das was mit der inversen Abbildung zu tun?
Ich freue mich auf eure Antworten.

        
Bezug
Komposition: Antwort
Status: (Antwort) fertig Status 
Datum: 02:33 So 27.10.2013
Autor: Al-Chwarizmi


>  Hallo Leute,
>  ich weiß wann Abbildungen injektiv sind und wann sie
> surjektiv sind. Auch weiß ich wie Kompositionen gehen. Wir
> haben gezeigt dass eine Komposition aus zwei inj. Abb. auch
> inj. ist. Das gilt dann auch bei surj.. Nun frage ich mich
> aber. Kann man für jedes f eine Komposition aus einer
> surj. und inj. Abb. aufschreiben? Wie geht das? ich habe
> echt keine Ahnung wie ich darauf kommen soll. Hat das was
> mit der inversen Abbildung zu tun?



Hallo Marcomathik und
                             [willkommenmr]


was genau ist gefragt ?

Verstehe ich das richtig, dass du eine (beliebige)
vorgegebene Funktion  $\ f:\ [mm] A\,\to\,B$ [/mm]  zerlegen willst in

     $\ f\ =\ [mm] i\circ [/mm] s$

wobei s surjektiv und i injektiv sein soll ?
  
Oder umgekehrt:

     $\ f\ =\ [mm] s\circ [/mm] i$

(Allenfalls ist beides möglich. Allerdings ist dabei
entscheidend, wie man die Ausgangs- und Zielmengen
der einzelnen Abbildungen passend wählt, und ob dies
wirklich möglich ist.)

Ich denke, dass du deine Frage präzisieren solltest.

LG ,   Al-Chw.




Bezug
                
Bezug
Komposition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:27 So 27.10.2013
Autor: Marcomathik

Ja genauso wie du es gesagt hast, ich möchte eine beliebige Abbildung zum Beispiel k  in eine surj. und inj. Abbildung zerlegen. sodass es am ende für alle Abbildungen k gilt

Bezug
                        
Bezug
Komposition: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 So 27.10.2013
Autor: hippias

Wenn Du keine besonderen Ansprueche an die Mengen stellst, von denen bzw. in die die gesuchten Funktionen abbilden, dann kannst Du sagen: zu jeder Funktion [mm] $k:A\rightarrow [/mm] B$ gibt es eine Menge [mm] $B_{k}$ [/mm] und eine surjektive Funktion [mm] $s:A\rightarrow B_{k}$ [/mm] und eine injektive Funktion [mm] $i:B_{k}\rightarrow [/mm] B$ so, dass $k$ die Komposition von $s$ und $i$ ist.

Vielleicht genuegt Dir dieser Hinweis ja schon.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]