www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitKomposition von Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Komposition von Funktionen
Komposition von Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komposition von Funktionen: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:11 So 13.01.2008
Autor: Ninjoo

Aufgabe
Seien I, J Intervalle, g: I [mm] \to \IR [/mm] sei gleichmäßig stetig auf I, f: J [mm] \to \IR [/mm] sei gleichmäßig stetig auf J und g(I) [mm] \subset [/mm]  J. Zeigen Sie, dass dann die Komposition f [mm] \circ [/mm] g gleichmäßig stetig ist auf I.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo,

Was ich mir bisher überlegt habe zum Beweis:

Sei [mm] \varepsilon [/mm] > 0 beliebig.

Dann [mm] \exists [/mm] ein [mm] \delta [/mm] > 0 mit x,y [mm] \in [/mm] I mit [mm] |x-y|<\delta [/mm] ,s.d.g. [mm] |g(x)-g(y)|<\varepsilon [/mm]

Jetzt muss ich also noch zeigen es ex. ein [mm] \mu [/mm] ,so dass für [mm] |g(x)-g(y)|<\mu [/mm] gilt |f [mm] \circ [/mm] g (x) - f [mm] \circ [/mm] g (y) | < [mm] \varepsilon [/mm]

Aber wieso sollte es genau so ein [mm] \mu [/mm] geben? Vermutlich ist es schwer das über diesen Weg zu beweisen..

Gibt es noch ein anderes Kriterium mit dem ich das Beweisen könnte?

Oder bedeuted gleichmäßige Stetigkeit, dass ich mir ein beliebiges [mm] \delta [/mm] oder [mm] \mu [/mm] aussuchen kann, und für alle x,y aus dem Intervall sind die Bilder kleiner als [mm] \epsilon [/mm] ?

Vielen dank, das du dir die Mühe gemacht hast, meine Frage zu lesen!

        
Bezug
Komposition von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 So 13.01.2008
Autor: dormant

Hi!

Gesucht ist ein  [mm] \overline{\delta}, [/mm] sd [mm] \forall\overline{\epsilon} [/mm] und [mm] \forall [/mm] x, [mm] y\in [/mm] I [mm] \subset [/mm] J gilt: [mm] |f(g(x))-f(g(y))|\le\overline{\epsilon}, [/mm] solange [mm] |g(x)-g(y)|\le\overline{\delta}. [/mm]

Man weiß, dass [mm] \exists \delta, [/mm] sd. [mm] |f(x)-f(y)|\le\epsilon, [/mm] solange [mm] |x-y|\le\delta [/mm] und zwar [mm] \forall [/mm] x, y [mm] \in J\supset [/mm] I und [mm] \forall\epsilon. [/mm]

Sei nun [mm] \overline{\epsilon} [/mm] vorgegeben. Dann setzt man [mm] \overline{\delta}:=\delta [/mm] und es gilt [mm] |f(g(x))-f(g(y))|\le\epsilon=:\overline{\epsilon}, [/mm] solange [mm] |g(x)-g(y)|\le\overline{\delta}. [/mm]

Jetzt muss man nur die Frage beantworten: kann [mm] |g(x)-g(y)|\le\overline{\delta} [/mm] überhaupt gelten und zwar für alle x, y in I? Vielleicht ist [mm] \overline{\delta} [/mm] viel zu klein und g wächst sehr schnel am Rande des Intervals I? Das kann aber nicht sein, da g gleichmäßig stetig ist, d.h. für alle [mm] \overline{\delta}=:\epsilon_{g} [/mm] und alle x, y [mm] \in [/mm] I ist ein [mm] \delta_{g} [/mm] zu finden, sd [mm] |g(x)-g(y)|\le\overline{\delta}=:\epsilon_{g}, [/mm] solange [mm] |x-y|\le\delta_{g}. [/mm]

Gruß,
dormant

Bezug
                
Bezug
Komposition von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 So 13.01.2008
Autor: Ninjoo

Ja Genau :D!

Dieses Argument habe ich gesucht!!

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]