www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikKompositionen von n
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Diskrete Mathematik" - Kompositionen von n
Kompositionen von n < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompositionen von n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Mo 07.11.2011
Autor: Schokokuchen

Aufgabe
Sei 1 ≤ k < n. Zeige, daß unter allen [mm]2^{n-1}[/mm] Kompositionen von n der Teil k genau [mm](n-k+3)2^{n-k-2}[/mm] mal auftritt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Def. Eine Komposition von n ist eine Darstellung von n als Summe [mm]n=a_1+a_2+...+a_k[/mm].

Für die ersten n habe ich mir die Anzahl der k rausgeschrieben.

n=2
Kompositionen {1+1, 2}
k=1 kommt 2 mal vor

n=3
Kompositionen: {1+1+1, 1+2, 2+1, 3}
k=1 kommt 5 mal vor
k=2 kommt 2 mal vor

n=4
Kompositionen: {1+1+1+1, 1+1+2, 1+2+1, 2+1+1, 2+2, 3+1, 1+3, 4}
k=1 kommt 12 mal vor
k=2 kommt 5 mal vor
k=3 kommt 2 mal vor

Ich habe leider noch keine Idee, wie ich auf den Zusammenhang mit der oben angegebenen Formel [mm](n-k+3)2^{n-k-2}[/mm] komme. Kann mir da jemand nen Hinweis geben?




        
Bezug
Kompositionen von n: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Mo 07.11.2011
Autor: reverend

Hallo Schokokuchen, [willkommenmr]

ich habe hier auf die gleiche Frage schon mal einen Anstoß gegeben.
Hilft Dir das weiter?
Wenn nein, dann komm mal mit einer etwas genaueren Frage, wo es denn hängt.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]