www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraKonjugation von Permutation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Konjugation von Permutation
Konjugation von Permutation < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konjugation von Permutation: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:20 So 09.11.2014
Autor: Killercat

Guten Abend miteinander,

ich hab eine Verständnisfrage. Nur kurz, ich soll zeigen dass die Permutationen (123) und (132) in A4 nicht konjugiert sind. Ich hab das nachgerechnet, bin am Ende aber etwas gestolpert, und zwar bei dem Umstand, dass beide oben genannten Elemente in der Menge enthalten sind.
Die Definition der Konjugation besagt ja, dass für [mm]\sigma[/mm],[mm]\phi[/mm] aus G, G gruppe, gilt:
[mm]\phi [/mm]~[mm]\sigma => \phi= s\sigma s^-^1 [/mm]
Man könnte meine Frage jetzt so formulieren: darf für die Rechnung s auch eine der beiden oben genannten Permutationen sein, also (123) oder (132)?

Ich hoffe man versteht was ich meine
Liebe Grüße

        
Bezug
Konjugation von Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 So 09.11.2014
Autor: UniversellesObjekt

Ja, das darf es, (Edit: das nachfolgende ist falsch, die beiden sind in der symmetrischen Gruppe konjugiert  aber nicht in $ [mm] A_4$), [/mm] du wirst die Aufgabe nicht lösen können, denn die Permurationen sind konjugiert.

Liebe Grüße,
UniversellesObjekt

Bezug
                
Bezug
Konjugation von Permutation: Doch lösbar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 So 09.11.2014
Autor: Schadowmaster

Doch, du kannst die Aufgabe lösen.
Es ist nach Konjugation in [mm] $A_4$ [/mm] gefragt, da sind die beiden nicht konjugiert.
Zur ursprünglichen Frage: Ja, du darfst die beiden auch als $s$ wählen, aber bedenke, dass links und rechts das gleiche $s$ stehen muss, es dürfen nicht zwei verschiedene sein.


lg

Schadow

Bezug
                        
Bezug
Konjugation von Permutation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 So 09.11.2014
Autor: UniversellesObjekt

Danke, das habe ich nicht gelesen.

Liebe Grüße,
UniversellesObjekt

Bezug
                
Bezug
Konjugation von Permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 So 09.11.2014
Autor: Killercat

Wie ist das gemeint, dass links und rechts das selbe s stehen muss?

Liebe Grüße

Bezug
                
Bezug
Konjugation von Permutation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:31 So 09.11.2014
Autor: Killercat

Habs hingekriegt, danke

Liebe grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]