www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKonjugationsklassen D_n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Konjugationsklassen D_n
Konjugationsklassen D_n < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konjugationsklassen D_n: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:13 So 08.11.2015
Autor: sissile

Aufgabe
Es sei n [mm] \ge [/mm] 3. Finden Sie alle Konjugationsklassen der [mm] D_n [/mm] und beweisen Sie, dass [mm] D_n [/mm] genau (n+6)/2 (bzw. (n+3)/2) Konjugationsklassen besitzt, wenn n gerade bzw. ungerade ist.


Hallo
[mm] D_n=\{ \alpha^i \circ \beta^j | 0 \le i < n, j \in \{0,1\}\} [/mm]
[mm] \alpha=(1...n) [/mm]
[mm] \beta= \begin{pmatrix} 1 & 2 &3&..&n-1&n\\ 1 & n &n-1&..&3&2\end{pmatrix} [/mm]

Konjugationsklasse von [mm] \alpha^i [/mm] besteh jeweils aus [mm] \alpha^i [/mm] und [mm] \alpha^{-i} [/mm]
[mm] \alpha^k \circ \alpha^i \circ \alpha^{-k}=\alpha^i [/mm]
[mm] \alpha^k \beta \circ \alpha^i \circ (\alpha^k \beta)^{-1}=...=\alpha^{-i} [/mm]

Konjugationsklasse von [mm] \alpha^i \circ \beta [/mm]
Zuerst habe ich induktiv gezeigt, dass [mm] \alpha^s \beta \alpha^{-s}= \alpha^{2s} \beta \forall [/mm] 0 [mm] \le [/mm] s < n
Dann gilt: [mm] \alpha^s \circ (\alpha^i \beta) \circ \alpha^{-s} [/mm] = [mm] \alpha^i \alpha^s \beta \alpha^{-s}=\alpha^i \alpha^{2s} \beta=\alpha^{i+2s}\beta [/mm]
und [mm] \alpha^s \beta \circ(\alpha^i \beta)\circ(\alpha^s \beta)^{-1}=\alpha^s \beta \circ (\alpha^i \beta) \circ (\beta^{-1} \alpha^{-s})=\alpha^s (\beta \alpha^i)\alpha^{-s}=\alpha^s (\alpha^{-i}\circ \beta)\alpha^{-s}= \alpha^{-i} \alpha^{s} \beta \alpha^{-s}=\alpha^{-i+2s} \beta [/mm]
[mm] \alpha^i \beta \sim \alpha^k \beta \iff [/mm] k [mm] \equiv [/mm] 2s+i (mod n) [mm] \vee [/mm] k [mm] \equiv [/mm] 2s-i (mod n)
Fall 1: n gerade d.h. n=2m
Habe ich schon gezeigt indem ich zeigte: [mm] \alpha^i \beta [/mm] zu [mm] \alpha^k \beta [/mm] konjugiert  [mm] \iff [/mm] i,k gerade oder i,k ungerade
Mir fehlt:
Fall 2:n ungerade d.h. n=2m+1
Ich will zeigen alle Spiegelungen bilden nur eine Konjugationsklasse.
Seien [mm] \alpha^i \beta [/mm] und [mm] \alpha^k \beta \in D_n [/mm]
Sind i,k gerade so folgt i=2l,k=2u mit l,u [mm] \in \mathbb{Z}: [/mm]
O.B.d.A i>k
[mm] \alpha^{l-u} \alpha^k \beta \alpha^{l-u}= \alpha^{l-u} \alpha^{2u}\beta \alpha^{l-u}=\alpha^{2u+2(l-u)} \beta=\alpha^{2l}\beta=\alpha^i \beta [/mm]
Sind i,k ungerade so folgt i=2l-1,k=2u-1 mit l,u [mm] \in \mathbb{Z}: [/mm]
O.B.d.A. i>k
[mm] \alpha^{l-u} \alpha^k \beta \alpha^{l-u}=\alpha^{l-u} \alpha^{2u-1}\beta \alpha^{l-u}= \alpha^{2u-1+2(l-u)} \beta=\alpha^{2l-1}\beta=\alpha^i \beta [/mm]

Nun fehlt noch i gerade und k ungerade, i=2l und k=2u-1 mit l,u [mm] \in \mathbb{Z} [/mm]
Wie zeige ich in diesem Fall dass [mm] \alpha^i \beta [/mm] zu [mm] \alpha^k \beta [/mm] konjugiert ist?

Funktioniert bei euch der Formeledtitor auch nicht?
Bei http://www.matheboard.de/formeleditor.php kann man meine Passagen eintippen um die Formeln zu sehen.

        
Bezug
Konjugationsklassen D_n: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Di 10.11.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Konjugationsklassen D_n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:40 Fr 13.11.2015
Autor: sissile

Jetzt wo der Formeleditor wieder geht, kann man die Frage nochmal reaktivieren?

Ich hätte zwar nun eine Lösung zu dem Fall n ungerade aber würde gerne wissen ob das vorher im Beitrag 1 alles stimmt!

LG,
sissi

Bezug
        
Bezug
Konjugationsklassen D_n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:52 Sa 14.11.2015
Autor: hippias

Ich finde das Rechnen mit Elementen nicht so vergnüglich. Daher schlage ich einen leicht anderen Weg vor, statt mich durch Deine Rechnung durchzukämpfen (die aber sicherlich richtig ist).

Setze [mm] $A:=<\alpha>$ [/mm] und [mm] $B:=<\beta>$. [/mm] Dann ist [mm] $D_{n}= [/mm] AB$, [mm] $A\cap [/mm] B=1$, $|A|=n$ und $|B|=2$. Schliesslich brauche ich noch, dass [mm] $\alpha^{\beta}= \alpha^{-1}$ [/mm] ist.

Beachte, somit [mm] $a^{\beta}= a^{-1}$ [/mm] für alle [mm] $a\in [/mm] A$ gilt. Damit folgt:
Ist $n$ gerade, so ist [mm] $C_{A}(B)= <\alpha^{\frac{n}{2}}>$, [/mm] also [mm] $|C_{A}(B)|=2$. [/mm]
Ist $n$ ungerade, so ist [mm] $C_{A}(B)= [/mm] 1$.
Umgekehrt folgt damit, dass für [mm] $1\neq a\in [/mm] A$ gilt, dass [mm] $C_{B}(a)=B$ [/mm] genau dann, wenn $o(a)=2$ ist; anderenfalls ist [mm] $C_{B}(a)=1$. [/mm]

Mit der Dedekindidentität folgt, dass [mm] $C_{D_{n}}(\beta)= BC_{A}(\beta)$. [/mm] Also ist [mm] $|D_{n}:C_{D_{n}}(\beta)|= \begin{cases} n & n\mbox{ ungerade}\\ \frac{n}{2} & n\mbox{ gerade}\end{cases}$. [/mm] Dies ist die Länge des Orbits von [mm] $\beta$. [/mm]

Für [mm] $1\neq a\in [/mm] A$ ist [mm] $C_{D_{n}}(a)= AC_{B}(a)$. [/mm] Also ist [mm] $|D_{n}:C_{D_{n}}(a)|= \begin{cases} 2 & o(a)\neq 2\\ 1 & o(a)=2\end{cases}$. [/mm] Dies ist die Länge des Orbits von $a$.

Ich betrachte nun den Fall $n$ ungerade:
Die Konjugationsklasse von [mm] $\beta$ [/mm] umfasst also genau $n$ Elemente. Die Konjugationsklassen von [mm] $1\neq a\in [/mm] A$ umfassen genau $2$ Elemente: $a$ und [mm] $a^{-1}$. [/mm] $A$ zerfällt somit in [mm] $\frac{n-1}{2}$ [/mm] Klassen mit diesen $2$ Elementen und $1$. [mm] $D_{n}$ [/mm] ist damit ausgeschöpft: weitere Klassen gibt es nicht.

Sei $n$ gerade: Die Konjugationsklassen von [mm] $1\neq a\in [/mm] A$, [mm] $o(a)\neq [/mm] 2$, umfassen genau $2$ Elemente: $a$ und [mm] $a^{-1}$. [/mm] Beachte, dass $A$ genau eine Involution besitzt.
$A$ zerfällt somit in [mm] $\frac{n-2}{2}$ [/mm] Klassen mit $2$ Elementen und $2$ Klassen mit einem Element.
Die Konjugationsklasse von [mm] $\beta$ [/mm] umfasst genau [mm] $\frac{n}{2}$ [/mm] Elemente. Betrachte [mm] $\beta':=\alpha\beta$. [/mm] Rechne nach, dass [mm] $o(\beta')=2$ [/mm] gilt, und dass [mm] $\beta$ [/mm] und [mm] $\beta'$ [/mm] nicht in [mm] $D_{n}$ [/mm] konjugiert sind.
Dann gilt analog, dass der Orbit von [mm] $\beta'$ [/mm] die Länge [mm] $\frac{n}{2}$ [/mm] hat. Damit ist [mm] $D_{n}$ [/mm] ausgeschöpft. Weitere Klassen gibt es nicht.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]