www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Konsistenz eines OLS-Schätzers
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Statistik (Anwendungen)" - Konsistenz eines OLS-Schätzers
Konsistenz eines OLS-Schätzers < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konsistenz eines OLS-Schätzers: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:45 Do 06.05.2010
Autor: phoenixblob

Aufgabe
Let [mm] yi=\beta_1*x_i_1+\beta_2*x_i_2+e_i [/mm] and the explanatory variables are non-stochastic

[mm] y=\pmat{ 3 \\ 1 \\ 2 \\ 6 \\ 5 \\ 7} [/mm]

[mm] x=\pmat{ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1} [/mm]

a) Derive the OLS estimates for that model. Show that this estimates are uniased unter the maintained OLS-assumptions.
b) Show that the dervied OLS-estimator is consistent. For this assume that group size (the number of ones in [mm] x_1 [/mm] and [mm] x_2 [/mm] is n) and sample size is 2n

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Teilaufgabe a) ist kein Problem. Ich habe sie nur vollständigerhalber hinzugefügt.
Es kommt heraus [mm] b=\pmat{ 2 \\ 6 } [/mm]
Und durch den Beweis, dass (X'X)^-1 X'e=0 ergibt (mit konkreten Zahlen ausgerechnet), ergibt sich, dass der OLS-Schätzer erwartungstreu ist.

Nun zu Teilaufgabe b). Ich weiß, wie man allgemein beweist, dass der OLS-Schätzer konsistent ist. Beispiel: www.eui.eu/Personal/Guiso/Courses/Econometrics/notes_lect2.pdf

Nur habe ich Probleme, diesen Beweis mit konkreten Zahlen durchzuführen.
Prinzipiell geht es darum zu beweisen (glaube ich jedenfalls zu wissen), dass [mm] E((1/n)\summe_{i=1}^{n}x_i*e_1 [/mm] und [mm] Var((1/n)\summe_{i=1}^{n}x_i*e_1) [/mm] gegen 0 geht.

Aber ich weiß nicht, wie ich das hinkriegen soll, insbesondere bei der Varianz.

Danke für eure Hilfe!

        
Bezug
Konsistenz eines OLS-Schätzers: Antwort
Status: (Antwort) fertig Status 
Datum: 07:28 Do 06.05.2010
Autor: luis52

Moin phoenixblob,

zunaechst ein [willkommenmr]

Schreibe fuer die ersten $n_$ Eintraege der endogenen Variablen [mm] $\mathbf{y}_1$, [/mm] analog [mm] $\mathbf{y}_2$ [/mm] fuer die letzten.  Ist [mm] $\bar y_j$ [/mm] das arithmetische Mittel von [mm] $\mathbf{y}_j$, [/mm] so ist der OLS-Schaetzer [mm] $\mathbf{b}=(\bar y_1,\bar y_2)'$. [/mm]  Argumentiere ueber die Konsistenz arithmetischer Mittel.

vg Luis
            

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]