www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenKontinuitätsgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Partielle Differentialgleichungen" - Kontinuitätsgleichung
Kontinuitätsgleichung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kontinuitätsgleichung: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:11 Mo 23.04.2012
Autor: Mathe_001

Aufgabe
Sei ein konstantes Geschwindigkeitsfeld [mm] u=(u_{1},u_{2},u_{3}) [/mm] gegeben. Gesucht wird eine Dichteverteilung p: [mm] \IR [/mm] x [mm] \IR^{3} \to \IR, [/mm] die die Kontinuitätsgleichung [mm] \bruch{\partial p}{\partial t}+\nabla p\cdot{}\vec{u}=0 [/mm] erfüllt.

a) Zeige, dass für jeden Punkt [mm] (t,\vec{x})\in \IR [/mm] x [mm] \IR^{3} [/mm] die gesuchte Dichteverteilung p konstant entlang der Gerade [mm] (t+s,\vec{x}+s\vec{u}), [/mm] s [mm] \in \IR [/mm] ist.
Hinweis: Betrachte die Funktion [mm] z(s)=p(t+s,\vec{x}+s\vec{u}) [/mm] und zeige, dass z'(s)=0 gilt.
b) Es sei g [mm] \in C^{1}(\IR^{3}) [/mm] gegeben und es gilt [mm] p(0,\vec{x}) [/mm] = [mm] g(\vec{x}). [/mm] Bestimme jetzt die Funktion p.
Hinweis: Benutzte, dass laut (a) [mm] p(t,\vec{x})=p(0,\vec{x}-t\vec{u}) [/mm] gilt. (Hier wurde links in [mm] p(t+s,\vec{x}+s\vec{u}) [/mm] s=0 und rechts s=-t eingesetzt)

Hallo zusammen,

also ich hab eine frage zu a):

[mm] z(s)=p(t+s,\vec{x}+s\vec{u})=f(a,b) [/mm] mit a=t+s und [mm] b=\vec{x}+s\vec{u} [/mm]

[mm] z'(s)=f_{a}* \bruch{d}{ds}(a) [/mm] + [mm] f_{b}* \bruch{d}{ds}(b) [/mm]
    
     = [mm] f_{a} [/mm] + [mm] f_{b}*\vec{u} [/mm]

Meine Idee ist, dass ich das jetzt so umforme, dass es die Kontinuitätsgleichung erfüllt. Sprich:
[mm] f_{a} [/mm] =?  [mm] \bruch{\partial p}{\partial t} [/mm]
[mm] f_{b} [/mm] =?  [mm] \nabla p\cdot{} [/mm]

Nur weiß ich nicht, wie ich das zeigen soll.

[mm] f_{a}=p_{t+s}= \bruch{\partial p}{\partial (t+s)} [/mm]
[mm] f_{b}=\vektor{ \bruch{\partial p}{\partial (x_{1}+su_{1})}\\\bruch{\partial p}{\partial (x_{2}+su_{2})}\\\bruch{\partial p}{\partial (x_{3}+su_{3})}} [/mm]

so würde es bei mir aussehen und ich denke nicht, dass es richtig ist.

Ich hoffe, es kann mir einer nen Tipp oder so geben.

Gruß

Mathe_001

        
Bezug
Kontinuitätsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:21 Di 24.04.2012
Autor: rainerS

Hallo!

> Sei ein konstantes Geschwindigkeitsfeld
> [mm]u=(u_{1},u_{2},u_{3})[/mm] gegeben. Gesucht wird eine
> Dichteverteilung p: [mm]\IR[/mm] x [mm]\IR^{3} \to \IR,[/mm] die die
> Kontinuitätsgleichung [mm]\bruch{\partial p}{\partial t}+\nabla p\cdot{}\vec{u}=0[/mm]
> erfüllt.
>  
> a) Zeige, dass für jeden Punkt [mm](t,\vec{x})\in \IR[/mm] x
> [mm]\IR^{3}[/mm] die gesuchte Dichteverteilung p konstant entlang
> der Gerade [mm](t+s,\vec{x}+s\vec{u}),[/mm] s [mm]\in \IR[/mm] ist.
>  Hinweis: Betrachte die Funktion
> [mm]z(s)=p(t+s,\vec{x}+s\vec{u})[/mm] und zeige, dass z'(s)=0 gilt.
>  b) Es sei g [mm]\in C^{1}(\IR^{3})[/mm] gegeben und es gilt
> [mm]p(0,\vec{x})[/mm] = [mm]g(\vec{x}).[/mm] Bestimme jetzt die Funktion p.
>  Hinweis: Benutzte, dass laut (a)
> [mm]p(t,\vec{x})=p(0,\vec{x}-t\vec{u})[/mm] gilt. (Hier wurde links
> in [mm]p(t+s,\vec{x}+s\vec{u})[/mm] s=0 und rechts s=-t eingesetzt)
>  Hallo zusammen,
>  
> also ich hab eine frage zu a):
>  
> [mm]z(s)=p(t+s,\vec{x}+s\vec{u})=f(a,b)[/mm] mit a=t+s und [mm]b=\vec{x}+s\vec{u}[/mm]

Wozu f einführen? Das ist doch identisch mit p.

[mm] z(s)=p(t+s,\vec{x}+s\vec{u}) = p(a,\vec b)[/mm] mit $a=t+s$ und [mm]\vec b=\vec{x}+s\vec{u}[/mm].

>  
> [mm]z'(s)=f_{a}* \bruch{d}{ds}(a)[/mm] + [mm]f_{b}* \bruch{d}{ds}(b)[/mm]
>    
>  
> = [mm]f_{a}[/mm] + [mm]f_{b}*\vec{u}[/mm]

[mm] = p_a + \nabla_{\vec b}\,p * \vec{u} [/mm]

[mm] = \bruch{\partial p}{\partial t}(a,\vec{b}) + \nabla p (a,\vec{b}) * \vec{u} [/mm] .

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]