www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNichtlineare GleichungenKontraktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Nichtlineare Gleichungen" - Kontraktion
Kontraktion < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kontraktion: "Frage"
Status: (Frage) beantwortet Status 
Datum: 17:39 Sa 10.12.2005
Autor: Pollux

Hi,
Folgendes ist zu zeigen:
Falls A(f)(t):= [mm] \integral_{0}^{t} [/mm] {f(x) dx} mit [mm] t\in [/mm] [-a,a] kontrahierend ist, so ist a < 1. Dabei ist A:C[-a,a]->C[-a,a], zu C[-a,a] gehört die Supremumsnorm und es ist a>0.

Bis jetzt hab ich herausgefunden, dass
[mm] |\integral_{0}^{a} [/mm] {f(x) dx}| = [mm] |a|*|f(\xi) [/mm] (Mittelwertsatz) und
für kontrahierende Abbildungen F gilt |F'(x)| < 1, also
[mm] |a|*|f(\xi)| [/mm] < |a|. Vielleicht hilft das weiter.
mfg

        
Bezug
Kontraktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Mo 12.12.2005
Autor: mathemaduenn

Hallo Pollux,
|F'(x)|<1 auszunutzen scheint mir hier schwierig. Denn F=A und A ist ja eine Abbildung von C[-a,a] nach C[-a,a] die mußt Du erstmal ableiten ;-).
Aber die Definition von []Kontraktion ist ja viel allgemeiner.
Sinnvoll schein mir hier einen Widerspruchsbeweis zu probieren.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]