Kontraktion, Banachscher Fixpu < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:23 Mo 12.09.2016 | Autor: | duduknow |
Aufgabe | Abbildung $F: D [mm] \rightarrow [/mm] D [mm] \subseteq \mathbb{R}^n$ [/mm] ist eine Kontraktion auf $D$, falls ein $0 [mm] \le \theta [/mm] < 1$ existiert mit
[mm] $$\lVert [/mm] F(x) - F(y) [mm] \rVert \le \theta \lVert [/mm] x - y [mm] \rVert$$
[/mm]
für alle $x, y [mm] \in [/mm] D$.
Banachscher Fixpunktsatz: Es sei $F: D [mm] \rightarrow [/mm] D$ eine Kontraktion auf $D$, $D$ abgeschlossene Teilmenge des [mm] $\mathbb{R}^n$, [/mm] mit einer Kontraktionszahl $0 [mm] \le \theta [/mm] < 1$. Dann gilt:
1. Es existiert genau ein Fixpunkt [mm] $x^\star$ [/mm] von $F$. |
Hi,
ich komme mit dieser Definition / Satz nicht zurecht. Ist es nicht extrem von der Wahl der Norm abhängig, ob eine Funktion eine Kontraktion ist oder nicht?
Angenommen, ich habe $F: [mm] \mathbb{R}^2 \rightarrow \mathbb{R}^2$, [/mm] $F(x, y) = (x + 1, x + 1)$. Die Funktion hat ja wohl keinen Fixpunkt.
Wenn ich jetzt die Ableitung betrachte, also $F'(x, y) = [mm] \begin{pmatrix} 1 & 0 \\ 1 & 0\end{pmatrix}$, [/mm] dann ist die z.B. bzgl. der Zeilensummennorm ja $1$ und $F$ ist keine Kontraktion.
Jetzt definiere ich eine neue Norm [mm] $\tilde{\lVert \cdot \rVert} [/mm] := [mm] \frac{1}{2} \lVert \cdot \rVert$. [/mm] Bzgl. der neuen Norm ist die Ableitung dann ja [mm] $\frac{1}{2}$ [/mm] und $F$ ist somit doch eine Kontraktion und es müsste nach dem Satz einen Fixpunkt geben.
Wo ist das falsch?
Danke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:42 Mo 12.09.2016 | Autor: | leduart |
Hallo
du musst schon dieselbe Norm auf beiden Seiten verwenden, dann hast du bei ||x-y|| dasselbe 1/2 also wieder keine Kontraktion.
aber wenn du mit der ableitung arbeiten willst solltest du die "normale" euklidische Norm nehmen,
Gruß leduart
|
|
|
|