www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonv. mit Leibnitzkriterium(?)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konv. mit Leibnitzkriterium(?)
Konv. mit Leibnitzkriterium(?) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konv. mit Leibnitzkriterium(?): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Fr 28.01.2011
Autor: UNR8D

Aufgabe
Bestimmen Sie die Menge aller x [mm] \in \IR [/mm] sodass folgende Reihe konvergiert:
[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n*x^n}{(2n+1)!} [/mm]

Hi,
diese Aufgabe ist nur eine Teilaufgabe, bei der ich meine, dass sich für alle x aus R Konvergenz ergibt.

Um mit dem Leibnitzkriterium arbeiten zu können müsste ich x jedoch positiv wählen, damit alle a(n) >= 0 sind.
Weiterhin muss [mm] \bruch{x^n}{(2n+1)!} [/mm] eine monoton fallende Nullfolge sein.
Genügt es für die Monotonie zu zeigen, dass [mm] \bruch{a(n+1)}{a(n)} [/mm] = [mm] \bruch{x}{(2n+3)(2n+2)} [/mm] ist und damit für genügen große n kleiner als 1 wird, also sicher für [mm] n->\infty. [/mm]
D.h. genügt die Monotonie ab einem gewissen [mm] n_0 [/mm] ?
Und wie zeige ich dass es eine Nullfolge ist? Das erscheint mir gerade nicht so wirklich schwer, aber irgendwie schaff ichs grade trotzdem nicht.

Damit wäre jedoch noch keine Aussage für x<0 getroffen. Da habe ich leider gerade gar keine Ahnung was ich anstellen soll.

Wäre toll wenn mir jemand helfen könnte :)
lg UNR8D

        
Bezug
Konv. mit Leibnitzkriterium(?): ohne Leibniz
Status: (Antwort) fertig Status 
Datum: 20:26 Fr 28.01.2011
Autor: Loddar

Hallo UN8RD!


Umformuliert lautet diese Aufgabe: bestimme den []Konvergenzradius dieser Potenzreihe.

Wende dafür hier folgende Formel an:

$r \ = \ [mm] \limes_{n\rightarrow\infty}\left|\bruch{a_n}{a_{n+1}}\right|$ [/mm]

Eventuell entstehende Randwerte musst Du noch separat untersuchen.


Gruß
Loddar


Bezug
                
Bezug
Konv. mit Leibnitzkriterium(?): Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Fr 28.01.2011
Autor: UNR8D

Hi Loddar,
stimmt, so geht das ganze recht einfach.
Vielen Dank :)

lg UNR8D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]