www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisKonv.im quadr. Mittel-pktweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Konv.im quadr. Mittel-pktweise
Konv.im quadr. Mittel-pktweise < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konv.im quadr. Mittel-pktweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Mi 25.04.2007
Autor: anitram

Aufgabe
Konstruiere eine Folge von Funktionen [mm] x_{n}\in C[-\pi,pi], [/mm] die zwar im quadratischen Mittel, nicht jedoch punktweise gegen 0 strebt.

halli hallo!

ich habe genau die umgekehrte Aufgabe schon mal gestellt (der betreff meiner frage war "folgenkonstruktion"), und diese wurde auch beantwortet!

jetzt habe ich eben genau das umgekehrte zu lösen!

diesmal habe ich vielleicht sogar schon eine solche funktionenfolge gefunden. die frage ist jetzt nur, ob die auch hier funktioniert:

die funktionenfolge schaut so aus:
[mm] f(n)=\begin{cases} x^{n}, & \mbox{für } x \in [0,1] \mbox{ } \\ , & \mbox{ } sonst \mbox{} \end{cases} [/mm]

punktweise kann sie nciht gegen 0 konvergieren, da
[mm] f_{n}(1)=1 [/mm] für alle n ist.

aber im quadratischen mittel schon, da das [mm] \integral_{0}^{1}{f_{n}(x)^2 dx} [/mm] kleiner als [mm] \bruch{1}{2n+1} [/mm] ist, und das geht ja gegen 0.


die erste frage: stimmt das prinzipiell?
die zweite: hab ich ein problem, dass meine folge ja nicht wirklich in [mm] C[-\pi,\pi] [/mm] definiert ist (bzw. außer zwischen 0und 1 überall 0 ist)

die dritte, ist diese funktionenfolge denn überhaupt stetig???

ich bedanke mich schon mal im voraus für tipps und hinweise!

lg anitram

        
Bezug
Konv.im quadr. Mittel-pktweise: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Mi 25.04.2007
Autor: wauwau

Dein Funktion ist leider nicht stetig

ich würde folgende Funktion nehmen



[mm] f(n)=\begin{cases} (\bruch{x+\pi}{\pi})^{2n}, & \mbox{für } -\pi \le x \le 0 \\ (\bruch{x-\pi}{\pi})^{2n}, & \mbox{für } 0 \le x \le \pi \end{cases} [/mm]

Bezug
                
Bezug
Konv.im quadr. Mittel-pktweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:27 Do 26.04.2007
Autor: anitram

hallo werner!

zuerst einmal vielen dank für deine hilfe!

nur zur kontrolle würde ich gerne noch meine ergebnisse überprüfen lassen, wenns möglich ist!

punktweise konvergent ist diese folge nicht, weil im Punkt 1 hat sie ja immer den wert 1, und sonst divergiert sie.

aber im quadratischen mittel konvergiert sie gegen 0.
ich erhalte nämlich hier:
für n gerade:  [mm] (\bruch{2\pi}{4n+1})^{1/2} [/mm] und das geht ja gegen 0

für n ungerade: erhalte ich 0.

stimmt das so??

vielen dank schon mal imvoraus!!

lg anitram

Bezug
                        
Bezug
Konv.im quadr. Mittel-pktweise: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Do 26.04.2007
Autor: wauwau

stimmt...

Bezug
                                
Bezug
Konv.im quadr. Mittel-pktweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Do 26.04.2007
Autor: anitram

super, danke!!!

lg anitram

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]