www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieKonvergenz+Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Konvergenz+Integrale
Konvergenz+Integrale < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz+Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Mi 25.05.2011
Autor: mathefreak89

Aufgabe
[mm] \integral_{0}^{\pi}cot(x)\, [/mm] dx

Hallo mal wieder :)

hab das erstmal umgeschrieben

[mm] \integral_{0}^{\pi}\bruch{cos(x)}{sin(x)}\, [/mm] dx

hab das ganze dann substituiert:

u=sin(x)        [mm] dx=\bruch{1}{cos(x)} [/mm]

also erhalte ich:

[mm] \integral_{0}^{\pi}\bruch{1}{u}\, [/mm] dx

mit der Stammfunktion

F(u)=ln(u) und somit für F(x)=ln(sin(x))

Wenn ich die Grenzen dann einsetze:

[mm] ln(sin(\pi))-ln(sin(0)) [/mm]

und so dann ja

ln(0)-ln(0)

in welcher Form kann ich dann aussagen darüber machen ob das ganze konvergiert???

mfg

        
Bezug
Konvergenz+Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Mi 25.05.2011
Autor: reverend

Hallo MatheFreak,

da stimmt was nicht.

> [mm]\integral_{0}^{\pi}cot(x)\,[/mm] dx
>  Hallo mal wieder :)
>  
> hab das erstmal umgeschrieben
>  
> [mm]\integral_{0}^{\pi}\bruch{cos(x)}{sin(x)}\,[/mm] dx

[ok]

> hab das ganze dann substituiert:
>  
> u=sin(x)        [mm]dx=\bruch{1}{cos(x)}[/mm]

Naja. Das sollte schon heißen [mm] dx=\bruch{\blue{du}}{\cos{x}} [/mm]

> also erhalte ich:
>  
> [mm]\integral_{0}^{\pi}\bruch{1}{u}\,[/mm] dx

Gewiss nicht. Das Differential ist zu ersetzen (das hast Du nur zum Teil getan, indem Du den [mm] \cos{x} [/mm] säuberlich entfernt hast, aber das dx steht noch da). Außerdem sind auch die Grenzen zu substituieren. Und genau da beginnt das Problem.

> mit der Stammfunktion
>  
> F(u)=ln(u) und somit für F(x)=ln(sin(x))

Das ist richtig - außer dass die Integrationskonstante fehlt! -, aber eben oben nicht sauber aufgeschrieben.

> Wenn ich die Grenzen dann einsetze:
>  
> [mm]ln(sin(\pi))-ln(sin(0))[/mm]
>  
> und so dann ja
>  
> ln(0)-ln(0)
>  
> in welcher Form kann ich dann aussagen darüber machen ob
> das ganze konvergiert???

Tja. Da sind die beiden Randpunkte wohl gar nicht definiert. Darum sollst Du ja eine Konvergenzuntersuchung anstellen.

Deine Stammfunktion ist symmetrisch zu [mm] x=\bruch{\pi}{2} [/mm]

Es empfiehlt sich daher, das Integral an dieser Grenze aufzuteilen. Dann stellst Du fest, dass die beiden Teile gleich groß sind.
Es genügt also, einen davon zu untersuchen - und das geht.

Na dann, viel Erfolg.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]