www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Konvergenz
Konvergenz < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Mi 25.01.2006
Autor: charly1607

Aufgabe
Untersuchen Sie die folgenden Funktionsfolgen [mm] f_n: [/mm] [-1,1] [mm] \to \IR [/mm] auf punktweise und gleichmäßige Konvergenz. Geben Sie jeweils die Grenzfunktion an:
a) [mm] f_n(x)=(x+1/n)² [/mm]
b) [mm] f_n(x)=|x|² [/mm]
c) [mm] f_n(x)= \wurzel[n]{|x|} [/mm]
d) [mm] f_n(x)= x^n*(1-x)^n [/mm]

hallo, also bei der a hab ich ja was raus, weiß da aber nicht, wie ich das ganze nach n umstellen soll: 2/n+1/(n²)<varepsilon
bei den anderen hab ich schon schwierigkeiten bei der grenzwertbestimmung. aber bei b müsste der grenzwert 1 sein. da komm ich dann aber mit dem beweis, also  | fn(x)-f(x)|, nicht weiter. also ich bräuchte da hilfe. wäre echt super, wenn mir jemand weiter helfen könnte. danke

        
Bezug
Konvergenz: Idee
Status: (Antwort) fertig Status 
Datum: 20:17 Do 26.01.2006
Autor: Keffchen

Hallo erstmal.

Zu  (a):

Also $ [mm] f_n(x)=(x+1/n)² [/mm] $ konvergiert ja erstmal punktweise gegen x². Es gibt so einen Satz der besagt, dass wenn die Grenzfunktion stetig ist dann konvergiert die Funktion gleichmäßig.(Satz von Dini) Also ist die Funktionenfolge sogar gleichmäßig konvergent. Ich glaube eine zweite Bedingung ist, dass die Folge von Funkionen auch stetig sein muss.

Zu (b):

Bei der zweiten würde ich sagen, dass die Fktfolge gegen sich selbst konvergiert. Hier hast du ja kein (n) mit drin. Also bedeutet dies doch das die Folge immer so bleibt. Also kannst du doch  auf jeden Fall zu jedem  [mm] \varepsilon [/mm] ein n finden(es hängt ja nicht von n ab) so dass gilt |fn(x)-f(x)|< [mm] \varepsilon. [/mm] Daraus folgt:  [mm] \varepsilon [/mm] > 0, da fn(x)=f(x)

Zu (c)

Bei der dritten ist  [mm] \limes_{n\rightarrow\infty}fn(x) [/mm] = 1   [mm] \vee [/mm] x aus [-1,1]. Dies gilt da die n - te Wurzel aus x , wobei n gegen unendlich geht eins ist..
[mm] f(n)=\begin{cases} 0, & \mbox{für } x \mbox{ gleich 0} \\ 1, & \mbox{für } x \mbox{ ungleich 0} \end{cases} [/mm] Diese Funktion ist jedoch nicht stetig,  daher ist die Funktion nicht gleichmäßig konvergent.(Satz von Dini)

Zu (d)

Für x=1 konvergieren die Fkt. gegen 0. Das selbe gilt für x = 0.

Unter anderem ist $ [mm] f_n(x)= x^n\cdot{}(1-x)^n [/mm] = [mm] f_n(x)= (x-x^2)^n$. [/mm] Unter anderem ist ja [mm] x-x^2 [/mm] für x [mm] \varepsilon[-1,1] [/mm] kleiner als 1 größer als -1 für x ungleich 0 und 1, da du ja von x immer etwas was keiner als x ist abziehst. Somit kommt man zum Schluss das auch für diese x die Funktionen gegen 0 konvergieren. Damit konvergiert die Funktion punktweise auf die stetige Funktion f(x)=0. Damit ist sie sogar gleichmäßig konvergent.

Ich hoffe ich konnte dir helfen. Also ich geben natürlich keine Garantie drauf, dass alles richtig ist. :) Viel Glück noch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]