Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:39 Fr 24.11.2006 | Autor: | Leni-H |
Aufgabe | Gegeben seien eine Folge [mm] (a_{n})_{n \in \IN} [/mm] und ein a [mm] \in \IR [/mm] mit folgender Eigenschaft:
Jede Teilfolge [mm] (a_{n}_{k})_{k \in \IN} [/mm] von [mm] (a_{n})_{n \in \IN} [/mm] besitzt ihrerseits eine Teilfolge, die gegen a konvergiert.
Zeigen Sie durch Widerspruch, dass die Folge [mm] (a_{n})_{n \in \IN} [/mm] gegen a konvergiert. |
Hallo mal wieder,
hier mal wieder so ne Aufgabe, wo wir gar nichts verstehen (Leni und ich). Wir haben zwar in der letzten Vorlesung die Definition der Teilfolge kurz besprochen, allerdings kommen wir hier trotzdem nicht richtig weiter?
Kann hier jemand helfen? DAnke schon mal!!!
Gruß Michi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:03 Fr 24.11.2006 | Autor: | leduart |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo Leni und Michi
Erst mal kapieren, was der Satz sagt.
Die Folge(-1)^n hat z. Bsp. die Teilfolgen (-1)^{2n} und {-1)^{2n+1}
in der ersten findest du lauter Teifolgen mit GW 1, in der zweiten lauter mit GW -1
Da träfe der Satz also nicht zu.
bei (-1/n)^n kann man genauso aufteilen, aber die selbst oder Teilfolgen haben immer den Gw.0, also sie konvergieren.
Wenn man in ne sonst gegen 2 konvergierende teilfolge an jeder 7-ten Stelle ne 10 einbaut, hat sie 2 Häufungspunkte, 2 und 10. eine Teilfolge besteht aber aus nur 10 ern, und da findest du keine Teilfolge, die gegen 2 konvergiert drin.
Das zu den Beispielen.
und jetzt angenommen |ankj-a|<\varepsilon für n>N_0.
und das für alle Folgen a_nk.
aber es gibt kein N zu \varepsilon usw. für a_n.
das zu nem Widerspruch führen.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:40 Sa 25.11.2006 | Autor: | Leni-H |
Hallo Leduart!
Danke für deine Antwort. Hab ich das richtig verstanden, dass der Widerspruchsbeweis in diesem Falle so was ähnliches ist wie ein indirekter Beweis.... so nach dem Motto: aus nicht B folgt nicht a ?
Ich gehe jetzt also davon aus, dass [mm] a_{n} [/mm] nicht gegen a konvergiert, dass also gilt:
[mm] |a_{n}-a|>\varepsilon [/mm] für alle n>N
und dann sag ich dass dann auch für jede Teilfolge gelten muss:
[mm] |a_{nk}-a|>\varepsilon [/mm] für alle n>N und somit auch
[mm] |a_{nkj}-a|>\varepsilon [/mm] für alle n>N, was dann zu einem Widerspruch führt, da [mm] |a_{nkj}-a|<\varepsilon [/mm] sein muss (nach Voraussetzung) für alle n>N
Kann man das so machen? Aber irgendwie ist mir das noch nicht so ganz klar, weil man könnte ja auch eine Teilfolge [mm] a_{nk} [/mm] wählen, die immer kleiner ist als N, dann würde ja die Folgerung ja gar nicht zutreffen, dass [mm] |a_{nk}-a|>\varepsilon [/mm] sein muss.... Was macht man dann?
Gruß Leni
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:58 Sa 25.11.2006 | Autor: | leduart |
Hallo leni
> Hallo Leduart!
>
> Danke für deine Antwort. Hab ich das richtig verstanden,
> dass der Widerspruchsbeweis in diesem Falle so was
> ähnliches ist wie ein indirekter Beweis.... so nach dem
> Motto: aus nicht B folgt nicht a ?
Indirekter Beweis ja!
> Ich gehe jetzt also davon aus, dass [mm]a_{n}[/mm] nicht gegen a
> konvergiert, dass also gilt:
1. [mm]|a_{n}-a|>\varepsilon[/mm] für alle n>N
> und dann sag ich dass dann auch für jede Teilfolge gelten
> muss:
> [mm]|a_{nk}-a|>\varepsilon[/mm] für alle n>N und somit auch
> [mm]|a_{nkj}-a|>\varepsilon[/mm] für alle n>N, was dann zu einem
> Widerspruch führt, da [mm]|a_{nkj}-a|<\varepsilon[/mm] sein muss
Die Vors sagt nicht jede Teilfolge sonder in jeder Teilfolge gibts eine, und du musst zeigen, dass das nicht geht,(weils dann mindestens 2 HP gäbe.
Aber du bist fast durch.
> (nach Voraussetzung) für alle n>N
>
> Kann man das so machen? Aber irgendwie ist mir das noch
> nicht so ganz klar, weil man könnte ja auch eine Teilfolge
> [mm]a_{nk}[/mm] wählen, die immer kleiner ist als N, dann würde ja
> die Folgerung ja gar nicht zutreffen, dass
> [mm]|a_{nk}-a|>\varepsilon[/mm] sein muss.... Was macht man dann?
Eine Teilfolge ist immer unendlich, nur ein paar hundert oder tausend einzelne Folgeglieder bilden keine Teilfolge!
am einfachsten wär, ihr hättet das Cauchysche Konvergenzkrit. mit |an-am|....
Gruss leduart
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 11:31 So 26.11.2006 | Autor: | Leni-H |
Hallo Leduart!
Das Problem ist, dass die Häufungspunkte bei uns noch nicht eingeführt wurden, sodass ich das gar nicht benutzen kann. Kann ich es auch anders zeigen?
Ich versteh die Aufgabe irgendwie glaub noch nicht so richtig. Wieso sagt man nicht einfach, dass wenn eine Teilfolge konvergiert, dass dann auch die Folge konvergiert. Warum muss man das mit einer Teilfolge von der Teilfolge zeigen?
Gruß Leni
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:20 Di 28.11.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|