www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Konvergenzverhalten
Status: (Frage) beantwortet Status 
Datum: 20:22 Mo 26.03.2007
Autor: mathe-tu-muenchen

Aufgabe
Man bestimme, für welche x die folgenden Reihen konvergieren:

$ [mm] \sum_{n=1}^{\infty} \bruch{x^{2n-1}}{2n-1} (-1)^{n+1} [/mm] $

$ [mm] \sum_{n=1}^{\infty} \bruch{(-x)^{n-1}}{n} [/mm]  $

Hallo!

Ich kenn (so glaub ich zumindest) das Minorantenkriterium, das Majorantenkriterium, das Wurzelkriterium und das Quotientenkriterium.

Die gegebenen Ausdrücke erscheinen mir jedoch zu kompliziert um diese Kriterien anzuwenden. Außerdem hatte ich bis jetzt noch kein Beispiel mit einer  Potenzreihe gesehen. Kann mir vielleicht jemand helfen?

        
Bezug
Konvergenz: Quotientenkriterium oder ...
Status: (Antwort) fertig Status 
Datum: 20:34 Mo 26.03.2007
Autor: Loddar

Hallo mathe-tu-münchen!


Wenn Du die beiden Reihen mal umschreibst, sollte es mit dem Quotientenkriterium schnell machbar sein.

Zudem solltest Du bei diesen alternierenden Reihen auch mal an den Herrn Leibniz mit "seinem" Kriterium denken.

[mm]\sum_{n=1}^{\infty} \bruch{x^{2n-1}}{2n-1}* (-1)^{n+1} \ = \ -\bruch{1}{x}*\summe_{n=1}^{\infty}\bruch{(-1)^n}{2n-1}*\left(x^2\right)^n[/mm]

[mm]\sum_{n=1}^{\infty} \bruch{(-x)^{n-1}}{n} \ = \ -\bruch{1}{x}*\summe_{n=1}^{\infty}\bruch{(-1)^n}{n}*x^n[/mm]


Gruß
Loddar


Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Mo 26.03.2007
Autor: mathe-tu-muenchen

Danke! Ich weiß zwar noch immer nicht, was ich damit anfange, aber ich werde mich mal über das Leibniz-Kriterium schlau machen.

Gibt es eigentlich Reihen, bei denen ich nicht mehr beweisen muss, dass sie konvergieren, also dann für die anderen Kriterien benutzen kann?

Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Mo 26.03.2007
Autor: choosy


> Danke! Ich weiß zwar noch immer nicht, was ich damit
> anfange, aber ich werde mich mal über das Leibniz-Kriterium
> schlau machen.

Das ist hier eine gute Idee :)

>  
> Gibt es eigentlich Reihen, bei denen ich nicht mehr
> beweisen muss, dass sie konvergieren, also dann für die
> anderen Kriterien benutzen kann?

Prinzipiell  NEIN!!!
du kannst wohl davon ausgehen, das die "Reihe über 0" konvergiert, was streng genommen auch zu beweisen wäre....

Bezug
                                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:09 Di 27.03.2007
Autor: mathe-tu-muenchen

Ist bei dieser Folge $ [mm] \sum_{n=1}^{\infty} \bruch{x^{2n-1}}{2n-1}\cdot{} (-1)^{n+1} [/mm] \ = \ [mm] -\bruch{1}{x}\cdot{}\summe_{n=1}^{\infty}\bruch{(-1)^n}{2n-1}\cdot{}\left(x^2\right)^n [/mm] $ eigentlich der Koeffiziente [mm] a_k [/mm] = $ [mm] \bruch{(-1)^n}{2n-1} [/mm] $ ???

Danke!

Bezug
                                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 01:49 Di 27.03.2007
Autor: schachuzipus

Hallo zusammen,

ich mag mich irren, aber die beiden Reihen sehen mir stark nach Potenzreihen aus und die Aufgabe scheint mir darin zu bestehen, den Konvergenzradius zu bestimmen:

Also zu ersten Reihe würde ich mal Cauchy-Hadamard befragen:

[mm] \sum_{n=1}^{\infty} \bruch{x^{2n-1}}{2n-1} (-1)^{n+1}=\sum_{n=1}^{\infty} \bruch{(-1)^{n+1}}{2n-1}x^{2n-1} [/mm]

Also berechne mal [mm] \limes_{n\rightarrow\infty}\wurzel[2n-1]{\left| \bruch{(-1)^{n+1}}{2n-1}\right|}=\limes_{n\rightarrow\infty}\wurzel[2n-1]{\bruch{1}{2n-1}}=1 [/mm]

denn [mm] \wurzel[k]{k}\rightarrow [/mm] 1 für [mm] k\rightarrow\infty [/mm]

Also konvergiert die erste Reihe für |x|<1 und divergiert für |x|>1

Für [mm] x=\pm [/mm] 1 muss man per Hand untersuchen

(a) x=1 [mm] \Rightarrow \sum_{n=1}^{\infty} \bruch{x^{2n-1}}{2n-1} (-1)^{n+1}=\sum_{n=1}^{\infty} \bruch{1^{2n-1}}{2n-1} (-1)^{n+1}=\sum_{n=1}^{\infty} \bruch{(-1)^{n+1}}{2n-1} [/mm]

Da [mm] \left(\bruch{1}{2n-1}\right)_n [/mm] monoton fallende Nullfolge ist, kovergiert das Ding nach Leibniz

(b) x=-1 [mm] \Rightarrow [/mm] ....


Für die zweite Reihe [mm] \sum_{n=1}^{\infty} \bruch{(-x)^{n-1}}{n}=\sum_{n=1}^{\infty} \bruch{(-1)^{n-1}}{n}x^{n-1} [/mm]

berechne [mm] R:=\limes_{n\rightarrow\infty}\wurzel[n-1]{\left|\bruch{(-1)^{n-1}}{n}\right|} [/mm]

Dann ist der Kgz.radius [mm] \bruch{1}{R} [/mm] mit [mm] \bruch{1}{0}=\infty [/mm] und [mm] \bruch{1}{\infty}=0 [/mm]

usw.


Ich hoffe, ich liege hier nicht völlig daneben ;-)

Gruß

schachuzipus

Bezug
        
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:34 Mi 02.05.2007
Autor: mathe-tu-muenchen

OK, ich habe mich jetzt nochmal mit der Reihe [mm] \sum_{n=1}^{\infty} \bruch{(-x)^{n-1}}{n} [/mm] beschäftigt und wenn ich den Quotienten [mm] \lim_{n \to \infty}$ \left| {\bruch{a_{n+1}}{a_n}} \right| [/mm] $ berechne bekomme ich als Ergebnis $ [mm] \left| x \right| [/mm] $. Kann ich daraus jetzt eigentlich irgendetwas ablesen?

Ich mein ich es ist mir schon klar, dass diese Reihe für x=1 die alternierende harmonische Reihe ist und konvergiert und für x=-1 die harmonische Reihe ist und divergiert, aber was mache ich mit dem Ergebnis?

Bezug
                
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:12 Mi 02.05.2007
Autor: angela.h.b.


> OK, ich habe mich jetzt nochmal mit der Reihe
> [mm]\sum_{n=1}^{\infty} \bruch{(-x)^{n-1}}{n}[/mm] beschäftigt und
> wenn ich den Quotienten [mm]\lim_{n \to \infty}[/mm] [mm]\left| {\bruch{a_{n+1}}{a_n}} \right|[/mm]
> berechne bekomme ich als Ergebnis [mm]\left| x \right| [/mm]. Kann
> ich daraus jetzt eigentlich irgendetwas ablesen?

Hallo,

ja, das liefert Du folgende Informationen:

Für [mm] |x|={\bruch{a_{n+1}}{a_n}}<1 [/mm] konvergiert die Reihe.
Für [mm] |x|={\bruch{a_{n+1}}{a_n}}>1 [/mm] divergiert die Reihe.

Für |x|=1 erhältst Du keine Informationen. Da mußt Du gesonderte Untersuchungen durchführen, oder Dein Vorwissen bemühen:

>  
> Ich mein ich es ist mir schon klar, dass diese Reihe für
> x=1 die alternierende harmonische Reihe ist und konvergiert
> und für x=-1 die harmonische Reihe ist und divergiert


Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]