www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Mi 20.06.2007
Autor: FrediBlume

Aufgabe
Sei [mm](a_n)_{n\in\IN 0[/mm] eine Folge in [mm]\IR[/mm], die gegen a>0 konvergiert. Sei ferner [mm]q\in\IQ[/mm]. Zeigen Sie:
(1) Die Folge [mm](\sqrt[m]{a_n})_{n\in\IN}[/mm] konvergiert gegen [mm]\sqrt[m]{a}[/mm] für [mm]m\in\IN[/mm].
(2) Die Folge [mm]((a_n)^q)_{n\in\IN}[/mm] konvergiert gegen [mm]a^q[/mm]. Tipp: Benutzen Sie (1).

Hallo zusammen,

Hat mir jemand zur Aufgabe 1) einen Tipp? Die 2) möchte ich dann selbst hinbekommen :-).

Liebe Grüße, Fredi

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Mi 20.06.2007
Autor: blascowitz

Was da steht ist die Definition der Stetigkeit der Wurzelfunktion y= [mm] \wurzel[n]{x}. [/mm] Denn wenn [mm] a_{n} [/mm] gegen a kann man dass ja auch schreiben als | [mm] a_{n}-a|<\delta \Rightarrow |\wurzel[n]{a_{n}}-\wurzel[n]{a}|<\varepsilon. [/mm] Du musst also die Stetigkeit der wurzelfunktion zeigen
Anmerkung das n soll ein m sein bloß der compiler setzt das nicht richtig um.

Schönen Tach noch.

Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 Mi 20.06.2007
Autor: FrediBlume

Hallo!

Danke für deine Antwort! Ist das dann schon alles?

LG, Fredi

Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Mi 20.06.2007
Autor: leduart

Hallo
ja, aber die Stetigkeit musst du beweisen! und das ist dasselbe wie der direkte Beweis.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]