www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Di 28.10.2008
Autor: SusanneK

Aufgabe
Untersuchen Sie, ob [mm] (a_n) [/mm] konvergiert und berechnen Sie gegebenenfalls den Grenzwert:
[mm] (a_n):=(1+(-1)^n\bruch{n-1}{n+1}) [/mm]

Hallo,
mein Ansatz ist Folgender:
Sei [mm] n>m, \varepsilon>0 [/mm], dann gilt [mm] |a_{2n}-a_m|<\varepsilon [/mm].
Das bedeutet dann für ein gerades m:
[mm] 1+\bruch{2n-1}{2n+1}-(1+\bruch{m-1}{m+1})=\bruch{4n-2m}{2nm+2n+m+1} < ... < \bruch{2}{m+1}<\varepsilon[/mm]
und für ein ungerades m:
[mm] 1+\bruch{2n-1}{2n+1}-(1-\bruch{m-1}{m+1})=\bruch{4nm-2}{2nm+2n+m+1} < ... < \bruch{2m}{m+1}<\varepsilon[/mm]

Was bedeuten denn jetzt diese 2 Ergebnisse ?
Da man in beiden Fällen für ein grösser werdendes m immer kleiner Epsilon bleibt, ist die Folge konvergent ?
Oder ist der ganze Ansatz falsch ?

Danke, Susanne.


        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Di 28.10.2008
Autor: angela.h.b.


> Untersuchen Sie, ob [mm](a_n)[/mm] konvergiert und berechnen Sie
> gegebenenfalls den Grenzwert:
>  [mm](a_n):=(1+(-1)^n\bruch{n-1}{n+1})[/mm]


Hallo,

oft fährt man besser, wenn man sich erstmal anschaut, ob man beweisen oder widerlegen möchte.

Was man ja schonmal sieht: die Folgenglieder hängen davon ab, ob n gerade oder ungerade ist.

Du hast

[mm] a_n=\begin{cases} (1+\bruch{n-1}{n+1}), & \mbox{für } n \mbox{ gerade} \\ (1-\bruch{n-1}{n+1}), & \mbox{für } n \mbox{ ungerade} \end{cases}. [/mm]


Bedenke nun, daß [mm] \bruch{n-1}{n+1}=\bruch{n+1-2}{n+1}=1-\bruch{2}{n+1} [/mm] ist.

Jetzt siehst Du leicht, wogegen die geraden Folgenglieder konvergieren und wogegen die ungeraden.

Du hast also zwei Teilfolgen, die gegen verschiedene Grenzwerte konvergieren.

Also?

Gruß v. Angela



Bezug
                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:13 Di 28.10.2008
Autor: SusanneK

Hallo Angela,
VIELEN DANK !!

> oft fährt man besser, wenn man sich erstmal anschaut, ob
> man beweisen oder widerlegen möchte.

Wie wahr, und ich Esel habe 2 Blätter vollgekritzelt mit Rechnungen.

> Du hast also zwei Teilfolgen, die gegen verschiedene
> Grenzwerte konvergieren.

... also divergent.

VIELEN DANK !
LG, Susanne.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]