www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Konvergenz
Konvergenz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Do 30.12.2010
Autor: mathequestion2

Aufgabe
Gegeben seien Zufallsvariable [mm]X_n \sim Bin(n, p_n)[/mm] auf einem diskreten Wahrscheinlichkeitsraum [mm](\Omega,A, P)[/mm].
(i) Falls [mm]np_n = \lambda > 0 \forall n[/mm], wogegen konvergiert dann [mm]P(\{\omega : X_n(\omega) = k\})[/mm]?
(ii) Falls [mm]p_n = p \in (0, 1) \forall n[/mm], wogegen konvergiert dann [mm]P(\{\omega : \frac{X_n(\omega) - E[X_n]} {\sqrt{n}} \leq x\})[/mm]?
(Nutzen Sie, dass [mm] $X_n$ [/mm] dieselbe Verteilung besitzt wie [mm]Y_1 + \ldots + Y_n[/mm], wobei [mm]Y_i \sim Bin(1, p)[/mm] unabhängige Zufallsvariable sind.)


zur (i) Ich habe ja die Verteilungsfunktion [mm]F_X(x)=P(X_n(t)\leqx)=\sum_{k=0}^{x} {{n \choose k}}p^k(1-p)^{n-k}[/mm]. Kurz ich habe überhaupt keinen Plan. Ich habe folgende Konvergenzarten zur Auswahl:
* p-stochastisch
* fast sicher
* in Verteilung
* schwach

Welche nehme ich? Da fängt es schon an. Sollte ich die in Verteilung nehmen?

zu (ii) Das sieht für mich ein bisschen nach Zentralen Grenzwertsatz aus. Doch mehr kann ich da auch nicht ablesen.


        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Do 30.12.2010
Autor: luis52


> Kurz ich habe überhaupt keinen Plan. Ich habe folgende
> Konvergenzarten zur Auswahl:
>  * p-stochastisch
>  * fast sicher
>  * in Verteilung
>  * schwach

Moin,

eine hast du vergessen, und um die geht es:
Setze in (a) [mm] $a_n=P(\{\omega : X_n(\omega) = k\}) [/mm] $. Beweise die
Konvergenz von [mm] $(a_n)$ [/mm] gegen einen Grenzwert im
Sinne der Analysis.
Verfahre genauso in (b).

vg Luis


PS: Moechte nicht ausschliessen, dass diese Konvergenz zu einer der von dir genannten aequivalent ist, aber das uebersehe ich gerade nicht.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]