www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieKonvergenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Konvergenz
Konvergenz < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:30 So 28.08.2011
Autor: T_sleeper

Aufgabe
Sei f(x,t) eine [mm] L^\infty(\mathbb{R}^{2}) [/mm] Funktion, die gegen die [mm] L^\infty [/mm] Funktion f(x,0) für [mm] t\rightarrow0 [/mm] konvergiert.

Gilt diese Konvergenz dann auch in [mm] L^{1}? [/mm]


Hallo,

damit meine ich, gilt dann auch [mm] \int_{\mathbb{R}}|f(x,t)-f(x,0)|dx\to0 [/mm] für [mm] t\to0? [/mm]

Also wenn [mm] f(x,t)\to [/mm] f(x,0) gleichmäßig, dann ist [mm] \int_{\mathbb{R}}|f(x,t)-f(x,0)|dx\leq||f(x,t)-f(x,0)||_{\infty}\to0 [/mm] für [mm] t\to0 [/mm] oder? (auch wenn das das Supremum über alle x ist?).

Wenn da jetzt aber mal nur [mm] lim_{t\to0}f(x,t)=f(x,0) [/mm] steht, dann gehe ich immer von punktweiser Konvergenz aus. Gilt denn dann auch [mm] \int_{\mathbb{R}}|f(x,t)-f(x,0)|dx\to0 [/mm] für [mm] t\to0? [/mm]

Ich dachte mir, man könnte das vielleicht auch so machen: Es sind f(x,t) und f(x,0) beschränkte Funktionen. Dann sollte doch das Theorem der majorisierenden Konvergenz anwendbar sein, d.h. [mm] \underset{t\to0}{\lim}||f(\cdot,t)-f(\cdot,0)||_{L^{1}}=\underset{t\to0}{\lim}\int_{-\infty}^{\infty}|f(x,t)-f(x,0)|dx=\int_{-\infty}^{\infty}\underset{t\to0}{\lim}|f(x,t)-f(x,0)|dx=0. [/mm]

Meiner Meinung nach stimmt das. Oder gibt es irgendwelche Einwände?

        
Bezug
Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Di 30.08.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]