www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationKonvergenz Fourierreihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Fourier-Transformation" - Konvergenz Fourierreihe
Konvergenz Fourierreihe < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Mi 21.01.2009
Autor: Boki87

Aufgabe
[mm] f(x)=\begin{cases} 0, & \mbox{für } -1\le x<0 \mbox{} \\ x^3, & \mbox{für } 0\le x<1 \mbox{} \end{cases} [/mm]

Für welche [mm] x\in\IR [/mm] konvergiert die Fourierreihe gegen f(x)?

Die Fourierreihe habe ich berechnet:

[mm] F(x)=\bruch{1}{8}+\summe_{n=1}^{\infty}((-1)^n\bruch{3}{\pi^2n^2}-(-1)^n\bruch{6}{\pi^4n^4}+\bruch{6}{\pi^4n^4})cos(nx\pi)+((-1)^n\bruch{1}{n\pi}+(-1)^n\bruch{6}{\pi^3n^3})sin(nx\pi) [/mm]

Die Fourierreihe konvergiert gegen f(x) in dem Bereich wo sie stetig ist oder?

Den sin Teil brauch ich nicht beachten da dieser immer 0 ist.
Aber wie betrachte ich den cos Teil da dieser sowohl von x als auch von n abhängt?


Gruß
Boki87

        
Bezug
Konvergenz Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:34 Do 22.01.2009
Autor: reverend

Hallo Boki87,

wieso brauchst Du den Sinusteil nicht zu beachten?

Such Dir mal ein n aus. Ok.

Wieviel ist nun [mm] \sin{(n*\wurzel{3}*\pi)}? [/mm]

Nein, ich weiß es auch nicht. Dazu müsste ich wenigstens Dein n haben. Außer für n=0 ist das Ergebnis aber nicht 0.

lg,
reverend

Bezug
                
Bezug
Konvergenz Fourierreihe: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 01:04 Do 22.01.2009
Autor: Boki87

Stimmt...irgendwie hatte ich nur ganze Zahlen für x im Kopf...

Ich würde sagen die Fourierreihe ist für alle x stetig, es gibt ja kein x das ich nicht einsetzten darf oder?


Gruß
Boki87

Bezug
                        
Bezug
Konvergenz Fourierreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:22 Do 22.01.2009
Autor: reverend

Ja, genau.

Ich schreibe dies trotzdem als Mitteilung, weil Deine ursprüngliche Aufgabe noch der Lösung harrt. Heute abend kriege ich das nicht mehr hin, aber vielleicht sieht es so noch jemand anders, wer weiß?

Grüße,
reverend

Bezug
                                
Bezug
Konvergenz Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:41 Do 22.01.2009
Autor: Boki87

Dies würde doch dann letzten Endes bedeuten, dass die Fourierreihe für alle x gegen f(x) konvergiert oder?



Gruß
Boki87

Bezug
                                        
Bezug
Konvergenz Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:27 Do 22.01.2009
Autor: fred97

Ich nehme an, Ihr solltet f 2-periodisch auf ganz [mm] \IR [/mm] fortsetzen.

diese Fortsetzung ist stetig auf [mm] \IR [/mm]  \ {  2k+1: k [mm] \in \IZ [/mm] }.    

In allen Punkten x [mm] \in \IR [/mm]  \ {  2k+1: k [mm] \in \IZ [/mm] } konvergiert dann die Fourierreihe gegen f(x).

Nach der Dirichletschen Regel (die hattet ihr sicher) konvergiert die F. -Reihe in einem Punkt 2k+1  (k [mm] \in \IZ) [/mm] gegen 1/2


FRED

Bezug
                                                
Bezug
Konvergenz Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Do 22.01.2009
Autor: Boki87

Uff jetzt bin ich total verwirrt...[verwirrt]

Also ich frag mal nochmal ganz von Anfang, wenn ich herausfinden muss für welche [mm] x\in\IR [/mm] die Fourierreihe gegen f(x) konvergiert?

Untersuche ich dann in welchem Bereich die Funktion oder die Fourierreihe stetig ist?


Als nächstes wie komm ich denn auf  [mm] \IR [/mm] \ [mm] \{2k+1: k\in\IZ\}? [/mm]

Und die Dirichletschen Regel sagt mir jetzt auch nichts, ich habe auch probiert mal zu googeln aber da finde ich auch nichts vernünftiges. Kann es sein, dass diese noch unter einem anderen Namen bekannt ist?


Gruß
Boki87

Bezug
                                                        
Bezug
Konvergenz Fourierreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 Do 22.01.2009
Autor: reverend

"Dirichlet" zum Thema:

1) []-Bedingungen
2) []-Kern

Bezug
                                                        
Bezug
Konvergenz Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:03 Fr 23.01.2009
Autor: fred97

ohne die genauen Vor. für die D. _Regel zu nennen (Deine Funktion erfüllt die Vor. !):

Sei [mm] x_0 \in \IR. [/mm] Dann konv. die Fourierreihe von f gegen

      [mm] \bruch{f(x_0 +) + f(x_0 -)}{2} [/mm]

wobei [mm] f(x_0 [/mm] +) der rechtsseitige Grenzwert von f in [mm] x_0 [/mm] ist und [mm] f(x_0 [/mm] -) linksseitige.


FRED

Bezug
                                                
Bezug
Konvergenz Fourierreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Do 22.01.2009
Autor: Boki87

Und ja, des mit dem 2-periodisch stimmt.


Gruß
Boki87

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]