www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz Reihe
Konvergenz Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Reihe: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:32 Mi 05.02.2014
Autor: Babybel73

Hallo zusammen

Habe gerade folgende Aufgabe gelöst, und wollte wissen, ob dies so korrekt ist:
Zeigen Sie, dass die Reihe [mm] \summe_{i=1}^{\infty} (-1)^n*\bruch{1}{n*ln(n)} [/mm] konvergiert.

Meine Lösung:
Via Leibniz:
1) [mm] \limes_{n\rightarrow\infty} \bruch{1}{n*ln(n)} [/mm] = 0     OK
2) z.z.: [mm] \bruch{1}{n*ln(n)} [/mm] ist monoton fallend
Hierzu definiere ich f(x) = [mm] \bruch{1}{x*ln(x)} [/mm]
Dann [mm] f'(x)=\bruch{-x*ln(x)}{(x*ln(x))^2}=\bruch{-1}{x*ln(x)} [/mm]
Nun gilt für x [mm] \ge [/mm] 2 ln(x)>0 und x>0
[mm] \Rightarrow [/mm] f'(x) < 0 [mm] \Rightarrow [/mm] monoton fallend

Das sind ja alle Bedinungen die erfüllt sein müssen bei Leibniz, oder?



        
Bezug
Konvergenz Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Mi 05.02.2014
Autor: Diophant

Hallo,

> Hallo zusammen

>

> Habe gerade folgende Aufgabe gelöst, und wollte wissen, ob
> dies so korrekt ist:
> Zeigen Sie, dass die Reihe [mm]\summe_{i=1}^{\infty} (-1)^n*\bruch{1}{n*ln(n)}[/mm]
> konvergiert.

>

> Meine Lösung:
> Via Leibniz:
> 1) [mm]\limes_{n\rightarrow\infty} \bruch{1}{n*ln(n)}[/mm] = 0
> OK
> 2) z.z.: [mm]\bruch{1}{n*ln(n)}[/mm] ist monoton fallend
> Hierzu definiere ich f(x) = [mm]\bruch{1}{x*ln(x)}[/mm]
> Dann
> [mm]f'(x)=\bruch{-x*ln(x)}{(x*ln(x))^2}=\bruch{-1}{x*ln(x)}[/mm]

Die Ableitung ist falsch! Der Weg ist jedoch gangbar, wenn auch ungewöhnlich.

Gruß, Diophant

Bezug
                
Bezug
Konvergenz Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Mi 05.02.2014
Autor: Babybel73

Hallo Diophant

Hab's auch gerade bemerkt dass die Ableitung falsch ist :/
Aber wieso ist dies ein, wie du schreibst, ungewöhnlicher" Weg? Gibt es einfachere, oder was meinst du?

Besten Dank!

Bezug
                        
Bezug
Konvergenz Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Mi 05.02.2014
Autor: DieAcht

Hallo,

Du musst nicht mit solche starke Geschütze,
wie das Verwenden der Ableitung auspacken,
um diese Aufgabe zu lösen. Das ist alles :-)

Gruß
DieAcht

Bezug
                        
Bezug
Konvergenz Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Mi 05.02.2014
Autor: Richie1401

Hallo,

> Hallo Diophant
>  
> Hab's auch gerade bemerkt dass die Ableitung falsch ist :/
> Aber wieso ist dies ein, wie du schreibst, ungewöhnlicher"
> Weg? Gibt es einfachere, oder was meinst du?

Ja, wer schon bisschen weiter in der Mathematik steckt der würde schreiben:

"z.z. [mm] a_n [/mm] ist Nullfolge: klar"

hier ist es wirklich klar. [mm] (n)_{n\in\IN} [/mm] ist monoton wachsend, wie auch [mm] (\ln(n))_{n\in\IN}. [/mm] Daher ist auch [mm] n*\ln(n) [/mm] monoton wachsend und daher konvergiert der Bruch gegen Null.

Also im Prinzip sieht man das ganze sofort.

>
> Besten Dank!  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]