www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz Reihe
Konvergenz Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Reihe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:56 Mi 12.12.2007
Autor: kibard

Aufgabe
Untersuchen Sie die folgenden Reihen auf Konvergenz:

1. [mm] (-1)^{n}(\wurzel[n]{n}-1) [/mm]

Hallo ihr Lieben,

ich brauche hier ein wenig Unterstützung, weil ich nicht wirklich weiter komme.Wäre toll,wenn mir jemand hilft.

Zum ersten: Also da nehm ich an, dass man Leibniz benutzen muss. Dafür müssen zwei Kriterien erfüllt sein:
Es muss eine Nullfolge sein (ist in diesem Fall so)
Es muss monoton fallend sein. Und genau hier scheitert es bei mir. Ich weiß nicht wie ich das beweisen kann. Kann man da noch was anders schreiben oder ausrechnen oder so?
Danke schön



        
Bezug
Konvergenz Reihe: Hinweis
Status: (Antwort) fertig Status 
Datum: 21:04 Mi 12.12.2007
Autor: Loddar

Hallo kibard!


Wenn Du gezeigt hast (oder voraussetzen darfst), dass [mm] $\limes_{n\rightarrow\infty}\wurzel[n]{n} [/mm] \ = \ 1$ , folgt die Monotonie, wenn Du zeigst:
[mm] $$\wurzel[n]{n} [/mm] \ [mm] \ge [/mm] \ 1$$

Gruß
Loddar


Bezug
                
Bezug
Konvergenz Reihe: tipp
Status: (Frage) überfällig Status 
Datum: 21:59 Mi 12.12.2007
Autor: Betman

Wieso kann man dann sagen, dass monotonie folgt??
also aus [mm] n\ge [/mm] 1 [mm] \Rightarrow \wurzel[n]{n}\ge \wurzel[n]{1}, [/mm] also
[mm] \wurzel[n]{n}\ge [/mm] 1
wärs das?? und wieso folgt dann genau montonie??
vielen dank!!

Bezug
                        
Bezug
Konvergenz Reihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:33 Fr 14.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]