www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKonvergenz Summe gg Integral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Konvergenz Summe gg Integral
Konvergenz Summe gg Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Summe gg Integral: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:40 Do 26.04.2007
Autor: math.ias

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gegeben ist ein Funktion [mm] f\in\mathcal{C}^2(\mathbb{R}^{+})[/mm] und beschränkt.
Folgt die gleichmäßige Konvergenz der Summe
[mm] \sum_{j=1}^{\infty}(f(x+j\Delta)-f(x)) e^{-j\Delta}\Delta [/mm]
für [mm] {\Delta \to 0}[/mm] gegen
[mm]\int_{0}^{\infty}(f(x+z)-f(x)) e^{-z}dz[/mm]
direkt aus der Definition des Integrals, oder muss ich noch etwas zeigen? Ich weiß nämlich nicht wie ich hier vorgehen soll.

        
Bezug
Konvergenz Summe gg Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:13 Do 26.04.2007
Autor: Mathe_Alex

Äh...wie ist denn die genaue Aufgabenstellung?
Grundsätzlich würd ich sagen nein: Du weißt ja nicht mal, ob das uneigentliche Integral existiert...


Bezug
                
Bezug
Konvergenz Summe gg Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:40 Fr 27.04.2007
Autor: math.ias

Danke für deine Mitteilung.

Es ist eine Numerikaufgabe. Das Integral
[mm]F:=\int_{0}^{\infty}(f(x+z)-f(x)) e^{-z}dz[/mm]
sollte durch die Summe
[mm]F_{\Delta}:= \sum_{j=1}^{\infty}(f(x+j\Delta)-f(x)) e^{-j\Delta}\Delta [/mm]
approximiert werden, damit es in einem Programm implementiert werden kann. Deshalb hatte ich die x-Achse äquidistante Intervalle zerlegt ([mm]\Delta[/mm]) und hab dann die Treppenfunktion oben benutzt.
Ich sollte aber nun noch zeigen, dass
[mm]\lim_{\Delta\to0}\sup_{x\in R^{+}}\mid F_{\Delta}(x)-F(x)\mid = 0[/mm]
gilt.

Es kann auch angenommen werden, dass die Summe endlich ist, d.h. nur bis N läuft und das Integral somit bis [mm]N\Delta[/mm]. Da f beschränkt ist existiert ja dann auch das Intergal in dem Intervall.

Bezug
        
Bezug
Konvergenz Summe gg Integral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 Mi 02.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]