www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz des newtonverfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz des newtonverfahren
Konvergenz des newtonverfahren < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz des newtonverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 So 18.05.2008
Autor: CPH

Aufgabe
Wir betrachten das Newton-Verfahren zur Berechnung der positiven Nullstelle x^∗ von
f (x) = [mm] x^n [/mm] − c  mit n ∈ [mm] \IN, [/mm]  c > 0.

Zeigen Sie, daß die Newton-Iteration für jeden Startwert [mm] x_0 [/mm] > 0 gegen x^∗ = [mm] +c^{1/n} [/mm] konvergiert.

Ich habe jetzt stundenlang versucht zu zeigen, dass die Newtoniterationsfolge
x1= [mm] x_0 [/mm] – [mm] \bruch{1}{(f'(x_0))} *f(x_0) [/mm] beschränkt und monoton ist, ich krieg es aber leider nicht mehr hin.
Könnte vielleicht jemand überprüfen ob meine newtoniteration überhaupt richtig ist und mir helfen den Konvergenz zu zeigen?

Vielen Dank im Voraus

MfG
Christoph

        
Bezug
Konvergenz des newtonverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 So 18.05.2008
Autor: leduart

Hallo
ich würde  schreiben [mm] x_{n+1}=x_n-\bruch{f(x_n)}{f'(x_n)} [/mm]
aber das meinst du wohl.
1. Schritt für [mm] 0c^{1/n} [/mm] dann kannst du da anfangen und [mm] c^{1/n} [/mm] als untere Schranke nehmen-
2.f''(x)>0 für n>1 und x>0, d.h. die Steigung der Kurve (also f') steigt.
Damit schneidet jede Tangente bei [mm] x_n [/mm] näher an [mm] c^{1/n} [/mm] als [mm] x_n [/mm]
Das setzt du jetzt in Formeln um!
anderer Weg, du zeigst dass die Abildung [mm] g(x)=x-\bruch{x^n-c}{n*x^{n-1}}kontrahierend [/mm] ist.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]