Konvergenz einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Untersuchen Sie die Folge auf Konvergenz - geben sie den Grenzwert an:
an := [mm] \bruch{\alpha^2 + 2*\alpha*n^3}{\wurzel[3]{n^9*\alpha^3+1}} [/mm] |
Hallo, wisst ihr vielleicht wie ich das ganze so umformen kann, dass ich den grenzwert leichter bestimmen kann??? Die Wurzel in Nenner stört, die bekomme ich nciht aufgelöst...
...habe mir schon überlegt, die 1 unter der Wurzel wegfallen zu lassen weil sie nicht viel bewirkt, denn so komme ich auf den Grenzwert 2 aber ob das so einfach geht?
Gruß
DER-Helmut
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:00 Mo 14.05.2007 | Autor: | Loddar |
Hallo Helmut,
!!
Der Trick hier besteht darin, die höchste $n_$-Potenz auszuklammern, nämlich in Zähler und Nenner [mm] $n^3$ [/mm] :
[mm] $a_n [/mm] \ := \ [mm] \bruch{\alpha^2 + 2*\alpha*n^3}{\wurzel[3]{n^9*\alpha^3+1}} [/mm] \ = \ [mm] \bruch{n^3*\left(\bruch{\alpha^2}{n^3} + 2*\alpha*1\right)}{\wurzel[3]{n^9*\left(\alpha^3+\bruch{1}{n^9}\right)}} [/mm] \ = \ [mm] \bruch{n^3*\left(\bruch{\alpha^2}{n^3} + 2*\alpha\right)}{\wurzel[3]{n^9}*\wurzel[3]{\alpha^3+\bruch{1}{n^9}}} [/mm] \ = \ [mm] \bruch{n^3*\left(\bruch{\alpha^2}{n^3} + 2*\alpha\right)}{n^3*\wurzel[3]{\alpha^3+\bruch{1}{n^9}}}\ [/mm] = \ [mm] \bruch{\bruch{\alpha^2}{n^3} + 2*\alpha}{\wurzel[3]{\alpha^3+\bruch{1}{n^9}}}$
[/mm]
Nun die Grenzwertbetrachtung für [mm] $n\rightarrow\infty$ [/mm] ...
Kommst Du nun alleine weiter?
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:05 Mo 14.05.2007 | Autor: | DER-Helmut |
Ach logisch, ja klar! DANKE für deine Hilfe - ist ja garncht so schwer, wie gedacht ;)
Tschüss, schöner Abend und nochmals Danke!
|
|
|
|